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Extracellular vesicles (EVs) are membrane-enclosed nanoparticles released by most cells
in body fluids and extracellular matrix. They function as signal transducers in intercellular
communication, contributing to the maintenance of cell and tissue integrity. EVs
biogenesis is deregulated in various pathologies, in structural and functional connection
to the pathophysiology of donor cells. Consequently, EVs are considered diagnostic and
monitoring factors in many diseases. Despite consensus as to their activity in promoting
coagulation and inflammation, there is evidence suggesting protective roles for EVs
in stress states. Chronic kidney disease (CKD) patients are at high risk of developing
cardiovascular defects. The pathophysiology, comorbidities, and treatment of CKD may
individually and in synergy affect extracellular vesiculation in the kidney, endothelium, and
blood cells. Oxidative and mechanical stresses, chronic inflammation, and deregulation
of calcium and phosphate homeostasis are established stressors of EV release. EVs may
affect the clinical severity of CKD by transferring biological response modifiers between
renal, vascular, blood, and inflammatory cells. In this Review, we focus on EVs circulating
in the plasma of CKD patients. We highlight some recent advances in the understanding
of their biogenesis, the effects of dialysis, and pharmacological treatments on them and
their potential impact on thrombosis and vascular defects. The strong interest of the
scientific community to this exciting field of research may reveal hidden pieces in the
pathophysiology of CKD and thus, innovative ways to treat it. Overcoming gaps in EV
biology and technical difficulties related to their size and heterogeneity will define the
success of the project.

Keywords: CKD, ESRD, extracellular vesicles, dialysis, biomarkers, therapy

EXTRACELLULAR VESICLES: BIOVECTORS AND
BIOMARKERS

Extracellular vesiculation is an evolutionary conserved fundamental activity of both normal and
diseased cells (Gyorgy et al., 2011). As an integral part of cell growth, aging, or development
(Johnstone et al., 1987), as a way to get rid of unneeded cellular material, or as a means of
intercellular, interorgan, and interspecies crosstalk (Giricz et al., 2014), extracellular vesiculation is
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a key homeostatic mechanism contributing to survival, function,
remodeling, and repair processes (Bruno et al., 2009). As
cells transfer materials inside or outside them by secretory
and transport vesicles, absolutely healthy, stressed, or activated
cells release nanosized membrane-enclosed extracellular vesicles
(EVs) to the external environment. Within blood circulation, EVs
have a short half-life (from a couple of minutes to a few hours),
before being taken up by neighboring or distant cells.

The highly dynamic and omnipresent EV compartment
consists of a heterogeneous group of small exosomes (typically
<150 nm), medium sized microvesicles (MVs, or microparticles,
typically <1 µm), large sized apoptotic bodies, and several other
EV subtypes (Raposo and Stoorvogel, 2013). On a constitutive
basis or in response to stimulation, a cell can produce a wide
variety of EVs. Their phenotype, biophysical characteristics, and
biogenesis may overlap so much between each other and with
non-EV components (e.g., plasma protein aggregates) so EVs
characterization or classification is often a brainteaser.

Release of membrane vesicles is not a stochastic process
but rather a regulated, highly selective cellular ability. It
may have negative effects when overactivated, for example,
during inflammation. The EVs bear “real-time” molecular
signatures of the physiological states of the parental cells
and their microenvironment. Based on those compositional
and functional correlations, EVs are considered noninvasive
predictive, diagnostic, and biomonitoring factors for the
development and propagation of several diseases, including
cardiovascular events (Sinning et al., 2011) and structural renal
injury (Zhou et al., 2006), among others.

Moreover, according to numerous in vitro and in vivo
data, material delivered by plasma EVs to recipient cells
may induce immunomodulation, inflammation, oxidative stress,
thrombogenesis, and vascular senescence or dysfunction (Gyorgy
et al., 2011; Burger et al., 2012; Zecher et al., 2014; Cai et al.,
2015; Camus et al., 2015; Hosseinkhani et al., 2018). This is
quite reasonable for competent carriers endowed by nature with
a remarkable efficiency to preserve their cargo intact and active
along their journeys. Secreted cytokines, for example, are more
stable inside EVs than free in plasma (Fitzgerald et al., 2018).
Vice versa, the levels of circulating EVs are increased in diseases
associated with inflammation or coagulation (van Beers et al.,
2009), while proinflammatory and procoagulant factors promote
the extracellular vesiculation by healthy cells in vitro.

Cardiovascular abnormalities represent the leading cause
of increased morbidity and mortality in patients with chronic
kidney disease (CKD), which may result to end-stage kidney
disease (ESKD) (Antonelou et al., 2014). The molecular
mechanisms underlining CKD have been associated with a
pathophysiological context of chronic inflammation, anemia,
accumulation of uremic toxins, increased oxidative and
metabolic stresses (Antonelou et al., 2011), deregulation of
calcium and phosphate homeostasis, coagulation and vascular
abnormalities, and chronic or acute [e.g., by hemodialysis (HD)]
endothelial activation (Georgatzakou et al., 2016). Of note, all of
these pathologies have also been related to EV biology, either as
stress factors triggering EV release or as outcomes of EVs’ effects
on sensitive cell targets. Those bidirectional connections reflect

the dual role of EVs as both biomarkers of cell dysfunction and
vectors of bioactive molecules contributing to it (Figure 1). Not
surprisingly, CKD patients have elevated concentration of EVs in
body fluids (Amabile et al., 2005).

EVS IN THE PLASMA OF CKD PATIENTS:
GENERAL OUTLINE OF OUR
KNOWLEDGE

Endothelium and blood cells in CKD are characterized by
increased rate of extracellular vesiculation. Significant proportion
of EVs (in most studies, MVs) that are released following
activation of the origin cells (Antonelou et al., 2011) expose
phosphatidylserine (PS; Faure et al., 2006; Burton et al., 2013; Yu
et al., 2018) and are prothrombotic, often more than the parent
cells (Sinauridze et al., 2007), according to both morphological
and biochemical evidence (Gao et al., 2015b; Yu et al., 2018).
The intriguing finding that the platelet-derived MVs are less
procoagulant than in other diseases (Trappenburg et al., 2012)
(probably due to functional defects in platelets) does not break
up the intimate relation of EVs with thrombosis in CKD,
as uremic patients with thrombotic events have more MVs
compared to those without events (Ando et al., 2002). Moreover,
PS on plasma EVs may nucleate calcium phosphate, contributing
to ectopic calcification reactions (Wu et al., 2013). Therefore,
pharmacological blocking of the PS binding sites on cells and
EVs or lipid lowering drugs (Almquist et al., 2016) have been
considered as meaningful measures to prevent thrombosis and
vascular calcification risk in CKD. Of note, CKD patients with
vascular calcification have both more circulating endothelial
MVs and less endothelial progenitor cells compared to patients
without calcification. This looming imbalance in endothelial
damage and repair processes is probably induced by the MV-
mediated expression of osteocalcin (Soriano et al., 2014).

Several cross-talking factors seem to augment extracellular
vesiculation in CKD (Figure 1). Uremic toxins constitute the
central one. To support, the PS+ EV levels in vivo are inversely
correlated with the glomerular filtration rate (Almquist et al.,
2016; Yu et al., 2018), but positively with uric acid and proteinuria
levels (Yu et al., 2018). More procoagulant MVs are detected
in diabetes mellitus patients with CKD compared to patients
without it (Almquist et al., 2016), and in patients with extreme
albuminuria than in those with lower or normal levels (Yu et al.,
2018). To get a laboratory verification, incubation of normal
endothelial cells or red blood cells (RBCs) with (i) patients’
serum, (ii) uremic toxins at concentrations found in patients, or
(iii) increased concentration of phosphate induce PS exposure on
cells and EVs release (Faure et al., 2006; Abbasian et al., 2015; Gao
et al., 2015a,b; Yu et al., 2018).

Another informative (inverse) correlation of endothelial MVs
with shear stress is repeatedly detected in ESRD patients. It
suggests that variations in shear-stress determinants and blood
viscosity, including anemia and hemoconcentration arisen by
the dialysis or erythropoietin (EpO) supplementation, may affect
the vesiculation rate in the endothelium (Boulanger et al.,
2007). Indeed, more endothelial cell-derived MVs have been
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FIGURE 1 | The chronic kidney disease (CKD)-related pathophysiological factors, treatment modalities, and comorbidities affect the cellular stress and activation
status of endothelium and blood cells, leading to augmented release of extracellular vesicles (EVs) in the plasma. EVs contain molecular components of parental
cells, and thus, are considered biomarkers of disease phenotypes. EV release may represent a cytoprotective mechanism allowing, among other, removal of stress
or death signals from donor cells. Interactions of plasma EVs with recipient cells and plasma components may be involved in the progress of the primary disease per
se and its cardiovascular complications in both directions, either by transmitting and amplifying dangerous, cellular response modifiers or by counteracting them. The
“Janus face” is a general feature of EVs functional potential, related to their complex biology, in both donor and recipient cells. Advances in EV research have
provided sharper pictures of plasma EVs in CKD, identifying them as key parts of both problem and solution.

detected in child and adult dialysis patients with CKD, than
in patients not getting dialysis (Dursun et al., 2009; Merino
et al., 2010), but those findings may merely reflect the clinical
severity of the disease. When comparing patients of similar
clinical severity, both inflammation and repetitive mechanical
stress, imposed on endothelium and blood cells by hemodialysis,
still seem to augment vesiculation (Daniel et al., 2006). The same
inducers modify the EV phenotypes and micro-RNA (miRNA)
cargos, often in cell-specific (Faure et al., 2006; Trappenburg
et al., 2012), or dialysis modal-specific ways (Cavallari et al.,
2019). For instance, MV concentration is lower in patients
treated by hemodiafiltration versus conventional hemodialysis
(Georgatzakou et al., 2018). By examining the short-term effects
of a single dialysis session on EV measurements, dialysis still
triggers release of MVs but again, with marked differences
between high-flux and low-flux dialyzers (de Laval et al., 2019).
As to the accumulation of the PS-exposing MVs (Georgatzakou
et al., 2018) and smaller EVs (Ruzicka et al., 2019), dialysis

generally exerts a beneficial acute effect, mediated in part by EV
absorbance to the dialysis membrane (Ruzicka et al., 2019), at
least in patients with adequate response to EpO (Georgatzakou
et al., 2017). Additionally, hemodialysis seems to be more
effective in eliminating small compared to bigger EVs (Ruzicka
et al., 2019). There is evidence that EpO affects platelet activation
and promotes EV accumulation (Ando et al., 2002). This is quite
interesting, because endothelium damage and cardiovascular
disease appear more frequently in EpO resistance (Panichi
et al., 2011). Despite that, several renal-protective EpO signaling
pathways are proceeded through stimulating EV release by both
mesenchymal stem cells (Wang et al., 2015) and bone marrow
cells (Zhou et al., 2016). Finally, patients on hemodialysis are
regularly exposed to considerable amounts of phthalates leaching
by plastic tubing (Faouzi et al., 1999). Although the field is aware
of the associated risks, the probable contribution of phthalates on
comorbidities (Kataria et al., 2017) and extracellular vesiculation
[extensively studied in stored blood (Serrano et al., 2016)], as well
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as their probable dissemination to sensitive targets through EVs,
have not been investigated so far in CKD.

WHAT IS THE MESSAGE OF
CIRCULATING EVs IN CKD?

Like other pathologies, EVs represent phenotypic markers
of cellular stress and activation in CKD. More importantly,
their number and composition may also play a role in the
pathophysiology of cardiovascular complications, and thus in
mortality risk (Carmona et al., 2017a).

On one side, a wide panel of “incriminating” bioreactive
phenotypes have been detected in plasma EVs of ESRD
patients. Apart from PS, those phenotypes include platelet
activation markers, tissue factor (TF), IL-1β, miRNAs
(Shang et al., 2017), and advanced glycation end products
(AGEs) receptor (Stinghen et al., 2016), which are potentially
involved in coagulation, inflammation, oxidative stress, and
endothelial activation/dysfunction (Stinghen et al., 2016; de
Laval et al., 2019). Endothelial dysfunction, arterial stiffness,
and atherosclerosis are determinants of cardiovascular risk
in patients with or without CKD. Flow cytometry, functional
measurements, and Kaplan–Meier survival analysis have
showed that the concentration of endothelium-derived MVs
in ESRD selectively correlates with arterial dysfunction in vivo
(Amabile et al., 2005; Dursun et al., 2009), and further predicts
cardiovascular mortality (Amabile et al., 2012). MVs released by
cells exposed to uremic substances promote functional loss in
endothelial progenitor cells (marked by overexpression of NF-κB
and p53 proteins) (Carmona et al., 2017b) and TGFβ-mediated
proliferation of vascular smooth muscle cells (Ryu et al.,
2017), while isolated ESRD MVs can impair NO release and
endothelium relaxation (Amabile et al., 2005). Endothelial
dysfunction may be further related to activation of the alternative
complement pathway and of note, endothelium-derived MVs
in CKD do contain factor D and can activate the alternative
pathway in vitro (Jalal et al., 2018).

Endothelial dysfunction and fibrosis may be promoted in
CKD by EV-mediated miRNA transfer mechanisms (Xie et al.,
2017). miRNA present in MVs induced by uremic toxins disturb
signaling pathways involved in endothelial regeneration through
oxidative stress and apoptosis (Carmona et al., 2017b). Indeed,
a series of miRNAs that mostly target TGFβ signaling-related
mRNAs in recipient cells have been found enriched or depleted
in plasma and plasma-derived exosomes and MVs from patients
with CKD (Muralidharan et al., 2017). miR-92a, for instance,
is involved in atherosclerosis and cardiovascular disease as an
effective suppressor of key endothelial-protective mRNAs. High
serum levels of miR-92a have been associated with decreased
kidney function. Moreover, endothelial MVs of uremic patients
are enriched in miR-92a and uremic plasma upregulates its
expression in cultured endothelial cells (Shang et al., 2017).
Another miRNA, the miR-223 (which is abundant in resting
platelets and further upregulated following platelet activation by
pro-inflammatory factors), is enriched in platelet MVs of patients
with nephritis, or atherosclerosis. It was found that miR-223

can promote apoptosis induced by AGEs in endothelial cells
in vitro via targeting the insulin-like growth factor 1 receptor
(Pan et al., 2014). Of note, a higher expression of miR-223
was found in the endothelial-derived exosomes and MVs of
ESRD patients treated by bicarbonate hemodialysis compared to
those treated by online hemodiafiltration and healthy subjects
in close relation to variation in systemic inflammation markers
(Cavallari et al., 2019).

Apart from the EV-delivered miR223, exosomes and MVs
of ESRD patients with low levels of the Gla-rich protein (an
anti-inflammatory factor and inhibitor of calcification in the
cardiovascular system) can induce calcification in target vascular
smooth muscle cells, by promoting osteogenic differentiation
and inflammation (Viegas et al., 2018). There is evidence that
monocyte and endothelial MVs induce podocyte phenotypic
modifications in vitro [release of proinflammatory cytokines and
vascular endothelial growth factor (VEGF)] typically associated
with glomerular permeability and proteinuria (Eyre et al., 2011).
Moreover, plasma platelet MVs can cause glomerular endothelial
injury in animal models of diabetic nephropathy through
transferring of chemokine ligand 7 (CXCL7) and activation of the
mammalian target of rapamycin complex 1 (mTORC1) pathway
in glomerular target cells (Zhang et al., 2018). Finally, recent
studies revealed that plasma EVs in ESRD also contain the Klotho
protein (de Laval et al., 2019), a transmembrane component of
the distal convoluted tubule of the kidney. Klotho expression
declines with reducing renal function, and its deficiency has been
speculated to contribute to vascular calcification (Hu et al., 2012).

On the other side, EVs release is also an “alarm button”
pressed by cells facing life-threatening provocations. In RBCs, for
example, extracellular vesiculation increases by aging, oxidative
stress, and cold storage-associated lesions (Kriebardis et al.,
2008). Proteomic analyses of those EVs have suggested activity
toward disposal of abnormal, nonfunctional, or dangerous
materials (e.g., complement) that could otherwise signal
premature elimination of releasing cells (Willekens et al., 2008;
Tzounakas et al., 2016). In a similar way, release of caspase 3-
containing EVs by endothelial cells in vitro protects them from
apoptosis and detachment (Abid Hussein et al., 2007), suggesting
that a similar mechanism may contribute to endothelial cell
survival in CKD (Figure 1). Consequently, it is reasonable
to assume that increased release of PS+ RBC-derived EVs in
CKD may counterbalance erythrophagocytosis leading to anemia
(Georgatzakou et al., 2017). Complete phenotyping of EVs under
various clinical and treatment conditions would test the accuracy
of this assumption.

In addition, certain EVs may well induce anti-inflammatory
responses in recipient cells (Gasser and Schifferli, 2004), although
these responses may vary in pathological conditions including
hyperglycemia (Jansen et al., 2015). miR-222 (Jansen et al., 2015)
and Hsp27 (Shi et al., 2019) laden plasma EVs, for example, were
found to reduce tumor necrosis factor-alpha-induced ICAM-1
expression (and monocyte adhesion) and stimulate the release of
IL-10 and NF-kappa in endothelial and B cells, respectively, both
in vitro and in vivo. Moreover, plasma MVs that are released by
the dysfunctional endothelium of patients with unstable angina
are enriched in the miR-19b and exert antithrombotic function
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by inhibiting TF expression in endothelial cells (Li et al., 2014).
Several other miRNAs that are potentially encapsulated in plasma
EVs, such as the miR-23b (Zhao et al., 2016), have been shown to
alleviate fibrosis and albuminuria in diabetic nephropathy, and
thus, their levels are pathologically low in the serum and kidney
of the patients. It is worth studying the degree of encapsulation
of those cytoprotective miRNAs into the plasma EVs. Recent
reports in animal models of kidney disease showed that miRNA
expression is lower in plasma-derived exosomes compared to
the plasma and that the miRNA levels may widely vary in each
disease context (Xie et al., 2017). To sum up, plasma EVs may
counteract proinflammatory and procoagulant signals instead of
transmitting and amplifying them (Figure 1), and thus, part of
them may protect the vascular and kidney functions in CKD.

HOW CAN WE READ THE FULL
MESSAGE AND MOVE FORWARD?

EVs represent an exciting chapter of contemporary biology
and medicine. The disproportionally high ratio of reviews to
research articles dealing with plasma EVs in CKD (Figure 2A)
reflects a major interest for understanding a subject that is,
however, difficult to be studied. Generally, research on EVs is
a challenge for the scientific community, mainly due to their
size, heterogeneity, artificial generation during the preanalytical
stages, and lack of standardized methods of working with them
(Doyle and Wang, 2019). Let alone studying them in CKD
patients characterized by extreme variabilities in primary lesions,
comorbidities, and treatments, which individually and in synergy
affect both their release and composition (Carmona et al., 2017a).

Despite that, research on EVs is critical for CKD for many
reasons. First of all, we are now aware that EVs are key
figures in the frame of this disease. They have to be taken into
consideration, for instance, when measuring plasma cytokine
levels in patients, because EV-encapsulated cytokines may not
be detected by standard cytokine assays (Fitzgerald et al.,
2018). Second, EVs have been associated with most of the
cardiovascular risk factors (Hosseinkhani et al., 2018) and with
poor clinical outcomes in CKD as in many other diseases. Third,
regular recording of clinical/laboratory data of CKD patients
drives physicians to make individual, intervening decisions on
treatments per short intervals of time. Consequently, availability
of sensitive tools to support biomonitoring of the disease
progression and identification of patients at risk are highly
desirable. Finally, similar to their release, EVs uptake is also a
specific and regulated process. Since EVs can cross the glomerular
basement membrane, the possibility of using them as therapeutic
vehicles targeting the kidney cells per se (Oosthuyzen et al., 2016)
open new prospects for CKD management.

Plasma EVs may provide peripheral biomarkers easily
available for clinical diagnosis. The first step toward that is
discovery of a reliable marker (or panel of markers) being
related to a particular disease state, complication, or pathological
condition. The candidate biomarker should then be appropriately
validated in vivo, in animal disease models at first, and then,
in cohorts of patients by clinical studies. Last is bridging of

FIGURE 2 | ((A) Percentage of research and review articles dealing with
plasma EVs in CKD published in the last decade (N = 56). (B) The vast
majority of research data on plasma EVs in CKD derived in the period from
2002 till today (N = 37) were based exclusively on flow cytometry (FC). Fewer
studies combined FC with other methodologies (immunoblotting, nanoparticle
tracking analysis, proteomics, Elisa, electron microscopy) or they did not use
FC at all. References are shown in the Supplementary Material.

those biomarkers’ capabilities to clinical setting. Isolation of
EVs, especially exosomes, is not a clinically friendly procedure;
however, development of simple and quick innovative separation
methods (like the microfluidic based techniques) provides
candidates for potential use in the clinical setting.

Biomarker mining presupposes availability of reliable
EV metrical, compositional, physicochemical, and uptake
(Zaborowski et al., 2015) data. First of all, analytical methods
able to detect and characterize the entire vesicular population,
including the smaller (<200 nm) EVs, must be used. The majority
of data reported on plasma EVs in CKD have been extracted by
flow cytometry, the “gold standard” analytical method for EVs
characterization (Figure 2B). However, conventional cytometry
cannot detect vesicles < 300 nm, the area that harbors the
majority of EVs in human blood (Yuana et al., 2011; Arraud
et al., 2014). Apart from that, it is now well established that only
few blood EVs expose PS, namely, the most commonly used tag
for flow cytometry (Connor et al., 2010; Arraud et al., 2014).
Despite insights provided by immobilizing smaller EVs on bead
surfaces, and advances in the detection limits of new nanoscale
instruments (100–200 nm) (Dragovic et al., 2011; Gomes et al.,
2018), the fact is that the biology and functions of smaller plasma
EVs are largely unknown in CKD (Kapustin et al., 2015), in
opposite to those of urinary exosomes (Erdbrugger and Le,
2016). Of note, however, comparative proteomic analysis of RBC
membrane in ESRD patients with good or poor response to EpO
administration suggested release of small and/or PS-negative
EVs in responders that are undetectable by the conventional flow
cytometry (Georgatzakou et al., 2017).
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Assessment of vesiculation by the protein concentration of
a vesicular pellet is not accurate because pellets contain both
disease specific and unspecific protein profiles, and moreover,
they are unavoidably contaminated by plasma components
(Doyle and Wang, 2019). To get insight into EVs size and
concentration, sophisticated physical methods like nanoparticle
tracking (Dragovic et al., 2011; Burton et al., 2013) and tunable
resistive pulse sensing analyses, in combination with cryo-
electron microscopy, are currently used in the EV research
field (Hosseinkhani et al., 2018). Compositional analyses are
more appropriately performed by immunoblotting, the much
informative omics techniques, and by microfluidic devices
allowing capture of EVs on a chip’s surface and then lysis and
probing of lysate, for identification of both surface and lumen
components (He et al., 2014). Thermophoretic enrichment and
profiling has been successfully tested for cancer detection and
classification as an alternative method to detect surface proteins
of plasma EVs, following labeling with fluorescent aptamers (Liu
et al., 2019). Under such integrative characterization of plasma
EVs, lack of specific protein markers to distinguish between their
subtypes becomes less important.

Compositional analyses of EVs are of critical importance
to understand the hows and whys of their biogenesis, stimuli,
targets, and effects. Global and targeted mass spectrometry-
based proteomic analysis is best suitable to suggest biomarker
candidates (Zhou et al., 2006), the cellular destinations of EVs,
and thus, the most suitable therapeutic targets in a given
patient or disease context. However, analysis of one data type
by itself is often limited to correlations resulting by reactive
processes rather than by causative modifications. Integration
of multiomics (Hasin et al., 2017), electron microscopy and
physical characterization data (Thery et al., 2018) would rather
reveal hidden aspects of EV biology and functions, offering the
opportunity to understand the flow of material and information
in CKD.

In a similar way, simple enumeration of EVs is not enough
to establish a pathophysiological mechanism. Instead of it, time,
place, and means of interactions (ligand binding, membrane
fusion, or uptake by endocytosis), as well as identification of
the specific molecular content(s) that mainly account for any

given biological effect on target cells, are most critically connected
to their desirable or harmful bioreactivity. However, this is
also the hardest part in EV assessment. Incorporation of the
guidelines suggested by the International Society for Extracellular
Vesicles (Thery et al., 2018) would greatly benefit the emerging
contemporary area of research on CKD-related EVs.

CONCLUSION

Plasma EVs may have significant roles in CKD as disease
biomarkers, risk factors for the development of complications,
repair or protective factors diffusing harmful stress signals, and
finally, therapeutic factors. They seem to be part of the problem
and part of the solution. At times when advanced technologies
for EVs assessment are still evolving, understanding of their
biology, from biogenesis to ultimate effects on recipient cells,
is of key importance to reveal their clinical relevance to CKD.
Development of therapeutic interventions have already been
oriented to both block their negative effects and take advantage of
their beneficial properties. Regulation of EVs release or uptake by
drugs, including statins, antioxidants, and actin depolymerizing
agents, and removal from plasma by immunoadsorption have
been reported (Karpman et al., 2017). Those interventions may
allow prognosis, better diagnosis, and individualized treatments
for CKD patients.
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