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Abstract: The absolute luminescence efficiency (AE) of a calcium fluoride (CaF2:Eu) single crystal
doped with europium was studied using X-ray energies met in general radiography. A CaF2:Eu
single crystal with dimensions of 10 × 10 × 10 mm3 was irradiated by X-rays. The emission light
photon intensity of the CaF2:Eu sample was evaluated by measuring AE within the X-ray range from
50 to 130 kV. The results of this work were compared with data obtained under similar conditions for
the commercially employed medical imaging modalities, Bi4Ge3O12 and Lu2SiO5:Ce single crystals.
The compatibility of the light emitted by the CaF2:Eu crystal, with the sensitivity of optical sensors,
was also examined. The AE of the 10 × 10 × 10 mm3 CaF2:Eu crystal peaked in the range from 70 to
90 kV (22.22 efficiency units; E.U). The light emitted from CaF2:Eu is compatible with photocathodes,
charge coupled devices (CCD), and silicon photomultipliers, which are used as radiation sensors
in medical imaging systems. Considering the AE results in the examined energies, as well as the
spectral compatibility with various photodetectors, a CaF2:Eu single crystal could be considered for
radiographic applications, including the detection of charged particles and soft gamma rays.
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1. Introduction

The use of single crystals as radiation converters is very common in imaging or counting
applications, especially when coupled with optical sensors such as photomultipliers, which are
frequently employed in radiation detectors [1,2]. Additionally, they are widely used in particle
physics, homeland security, and in numerous disciplines of medical imaging, such as X-ray
computed and positron emission tomography (CT and PET, respectively), radiotherapy, radiography,
and mammography [3–16].

The state-of-the-art electronics that are used in today’s imaging systems require scintillators with
exceptional properties, which are tailored for every application [1,17–19]. This is also a prerequisite
for medical imaging, where the need for exceptional quality of the diagnostic images as well as
the lowest possible radiation exposure of patients as directed by the ALARA principle (as low as
reasonably achievable) is a priority [20]. In this scope, medical imaging detectors should incorporate
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scintillators with optimized characteristics in terms of efficiency and imaging performance. An example
is the time-of-flight (TOF) technique in PET scanners, requiring inorganic scintillators with primarily
extremely short decay time, high density, and light yield (LY) [2,21]. Similar concerns arise in other fast
applications such as CT, in which afterglow can cause blur in the final image [7].

During the last century, from the discovery of the very first scintillating materials, up to our era,
various research groups have tried to improve and tailor the properties of scintillating materials for
particular medical imaging applications [22–25]. For example, in positron emission tomography, single
crystals have been used in order to detect high-energy coincident photons, which are produced after
the emission of positrons from radioisotopes [26,27]. The use of scintillators with different properties
has been extensively researched and explored by the scientific community, and currently, a number of
single crystal materials have been adopted to be used in commercial PET scanners, such as lutetium
oxyorthosilicate (LSO), bismuth germinate oxide (BGO), yttrium orthoaluminate perovskite (YAP),
gadolinium oxyorthosilicate (GSO), among others [14,23,26,28–30]. LSO has been used as detector
material, for example in the Biograph™6 PET/CT scanner (Siemens Medical Solutions), whereas BGO
was used in the ECAT EXACT HR+ (Siemens Medical Solutions, Erlangen, Germany) and Discovery
ST PET/CT (General Electric, Chicago, Illinois, US) PET scanners [31,32].

Europium-activated calcium fluoride (CaF2:Eu) scintillators have already been incorporated in
many different applications such as spectroscopy, charged particle detection, double beta decay
investigation, the search for dark matter, low-energy radiation detectors, time-of-flight (TOF)
applications, mobile Compton cameras, solar cell application, as well as homeland security [33–40].
Besides, due to its long decay constant, it was used in phoswich detectors [38,39,41,42]. Furthermore,
CaF has been used as an efficient dosimeter material, due to the low atomic numbers of calcium
(Z = 20) and fluorine (Z = 9), along with its effective atomic number (Z = 16.5), which is close to that of
soft tissues.

Up until now, CaF has been used in a limited number of biomedical applications [22–25,43–52].
For example, CaF2 has been applied in conjunction with SiPMs in gamma spectrometry, and due to
its biocompatibility and the stability of the material, it has proven to be significant for fluorescent
labeling in biological applications. Furthermore, the very good transparency in a wide wavelength
range, the low refractive index, and the low phonon energy, make CaF2 suitable to host luminescent
ions, and thus a good choice for multimodal imaging [22,43,52–60].

CaF2:Eu has been used and studied for decades, in single crystal and nanocrystal forms [43,52–60].
This material is cheap and can be prepared easily in large quantities. Europium-activated calcium
fluoride is easily machined; it is also non-hygroscopic, inert, and insoluble (solubility 0.0017 g/100 g
H2O). The properties of this material are also compatible for particle and low-energy sensors, which are
well suited to use within vacuums since it has very low-vapor pressure point. Furthermore, it is robust
to thermal and mechanical shock, with a high melting point (1418 ◦C). It has low inherent background
radiation, but due to the density value of 3.18 g/cm3 and the low Z, the light yield is also relatively
moderate (19,000 photons/MeV) and the output of the emitted light is approaching 60% of sodium
iodide (Nal) doped with thallium. Thus, this material is not adequate for high-energy experiments.
CaF2:Eu has sharp maximum emission at around 435 nm and it can be used with titanium dioxide
(TiO2) as an efficient reflector, but has also partially overlapping absorption and emission around
400 nm. The index of refraction is 1.443, which is very close to that of most photomultiplier’s glasses
and silicon P-I-N photodiodes with shallow junctions. The band gap energy is large (12 eV), and the
decay time is around 940 ns. The energy resolution is excellent (5.7–6.07% at 662 keV), taking into
consideration the atomic value of this material [34–36,39,61–75].

In this study, the efficiency of a 10 × 10 × 10 mm CaF2:Eu single crystal was measured in order to
examine the performance of this material as a possible candidate for medical imaging applications
against the established single crystals, taking into consideration distinct advantages, such as: (i) the
light photons emitted by CaF2 are approaching 60% of that of Nal:Tl, and (ii) contrary to LSO, it has
no afterglow [24]. The light energy flux for exposure rates within a range of 80 kVps, covering X-ray
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radiography examinations, was measured. Additionally, the light emitted by CaF2:Eu was recorded
and correlated with various optical sensors that are used in radiation detectors. The results of this
study were compared with previously published results for Lu2SiO5:Ce and Bi4Ge3O12 single crystals
that are frequently used in commercial imaging systems. Finally, the stopping power of the crystals,
described via the energy absorption efficiency (EAE), was calculated and compared to previously
published data.

2. Materials and Methods

A CaF2:Eu single crystal, with polished surfaces, was purchased from Advatech UK Limited [76].
The crystal had dimensions of 10 × 10 × 10 mm. The crystal was irradiated by X-rays on a BMI Merate
X-ray tube with inherent filtration equivalent to 2 mm of Al and added filtration of 20 mm of Al.
The examined tube voltages span in a range of 80 kVps (50–130) [77].

2.1. Absolute and X-ray Luminescence Efficiency

In order to estimate the absolute and the X-ray luminescence efficiencies of the crystal sample, the
light flux was measured using a light integration sphere (Oriel 70451), connected to a photomultiplier
tube (PMT) (EMI 9798B). The signal of the PMT was fed to a Cary 401 vibrating reed electrometer and
the exposure rate was measured with a calibrated dosimeter (RTI Piranha P100B) [78]. The measured
emitted light from the single crystal, divided by the X-ray exposure, provided the absolute luminescence
efficiency (AE), i.e., the energy flux of the emitted light

.
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(µen/ρ)air is the X-ray mass energy absorption coefficient of air, and (WA/e) is the average energy
per unit of charge required to produce an electron–ion pair in air, as obtained from tabulated data [79].

2.2. Spectral Matching

The percentage of the emitted light from a single crystal that can be detected by a sensor can be
quantified using the factor of the spectral matching αs, which is given by Equation (3):

αs =
∫
φλ(λ)SD(λ)dλ/

∫
φλ(λ)dλ (3)

In Equation (3), φλ(λ) is the emitted light, and SD(λ) is the sensor’s detection efficiency in
particular wavelengths [78].

The emitted light was measured by a grating optical spectrometer (Ocean Optics Inc., HR2000).
The spectral sensitivities of the optical detectors were obtained from tabulated data [80–84]. The effective
efficiency (ηe f f ) was defined as the product of AE with the Spectral Matching Factor [84].
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2.3. Energy Absorption Efficiency

The radiation detection properties of a scintillator can by quantified by the energy absorption
efficiency (EAE) [85–87]. EAE expresses the energy locally deposited at the sites of primary photon
interactions and is a useful parameter for characterizing the efficiency of planar scintillators. The energy
absorption efficiency was calculated by Equation (4):

〈
ηε

〉
E =

E0∫
0
Ψ(E)

(
µtot,en(E)
µtot,t(E)

)
ηq(E)dE

E0∫
0
Ψ(E)dE

(4)

ηq(E) is the monoenergetic quantum efficiency. µtot,t(E)/ρ is the X-ray total mass attenuation
coefficient of the scintillator, and µtot,en(E)/ρ is the total mass energy absorption coefficient of the
scintillator, which includes all the mechanisms of energy deposition locally at the point of X-ray
interaction within the crystal [79,88].

3. Results and Discussion

Figure 1 shows the AE results for the CaF2:Eu single crystal in the examined energy range.
The results were compared with published data, for LSO and BGO crystals of equal dimensions
(10 × 10 × 10 mm3) [28]. The AE of the CaF2:Eu increased up to 80 kilovolts. From 80 to 130 kilovolts,
the AE values progressively decreased. The maximum value at 80 kVp was 22.22 E.U. The 10 × 10 × 10
mm3 CaF2:Eu crystal had increased AE compared to both LSO and BGO, across the examined kVp
range [28]. However, for values higher than 90 kVp, the AE of the CaF2:Eu crystal showed a tendency
to decrease due to the lower density and Z value of CaF2:Eu, which results also in low light yield
(19000 photons/MeV) when interacting with higher energies [57]. In this energy range, the AE values
of the 10 × 10 × 10 mm3 LSO crystal showed a constant increase (light yield ≥ 26,000 photons/MeV).
BGO, due to the low light yield (8200 photons/MeV), showed lower AE values. Figure 1 also shows
XLE results (right Y axis) for the 10 × 10 × 10 mm3 CaF2:Eu and LSO crystals in the examined energy
range. The BGO data were excluded, since their values were hardly visible in the graph. The X-ray
luminescence efficiency of CaF2:Eu constantly decreases within the radiographic energies, showing a
maximum at 50 kVp. The XLE of LSO increases up to 70 kVp and remains almost constant thereafter.
This behavior is influenced by the X-ray mass energy absorption coefficients of air (µen/ρ)air in this
energy range and the average energy per unit of charge that is required to produce an electronion pair
in air (WA/e); the latter is used upon the conversion of X-ray exposure data into X-ray energy flux,
in order to determine the fraction of incident energy converted into emitted light.

The luminescence efficiency results indicate that the AE values of CaF2 were higher than both the
commercial employed LSO and BGO single crystals, across the examined energy range, thus supporting
the main hypothesis of the current study regarding the possibility of application of CaF2 in medical
imaging applications. This finding is significant for medical imaging modalities lying in this energy
range. For higher energies, CaF2 efficiency shows a tendency to decrease, thus suggesting that it would
not be efficient for nuclear medicine applications.



Crystals 2019, 9, 234 5 of 12
Crystals 2019, 9, x FOR PEER REVIEW  5 of 12 

 

 

Figure 1. Absolute luminescence efficiency (AE) and X-ray luminescence efficiency (XLE) results for 

the 10 × 10 × 10 mm3 CaF2:Eu crystals. Comparison of the AE results with published data for lutetium 

oxyorthosilicate (LSO) and bismuth germinate oxide (BGO). 

Figures 2a–d show the normalized emitted optical spectrum of CaF2:Eu crystal upon excitation 

with UV light. The spectral data are shown along with the sensitivity values of a variety of optical 

sensors. Figure 2a,b show mostly the spectral sensitivities of various PMTs and photocathodes used 

in nuclear medicine techniques. Figure 2c,d show the spectral sensitivities of various charge-coupled 

devices (CCD) and complementary metal–oxide semiconductors (CMOS) used in imaging 

modalities. The transition of the Eu ions with oxidation state of +2, in CaF2, from the 4f65d1 levels 

configuration to the 4f7 ground state configuration, result in a near ultraviolet, bluish emission 

maximum at 424 nm, with a full-width-at-half-maximum (FWHM) of about 29 nm, which is close to 

previously published values [89–91]. 

 

 

Figure 2. CaF2:Eu single crystal emitted spectrum along with the sensitivity of: (a) and (b) 

photomultiplier tube (PMTs) and photocathodes, (c) charge-coupled devices (CCDs), (d) 
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Figure 1. Absolute luminescence efficiency (AE) and X-ray luminescence efficiency (XLE) results for
the 10 × 10 × 10 mm3 CaF2:Eu crystals. Comparison of the AE results with published data for lutetium
oxyorthosilicate (LSO) and bismuth germinate oxide (BGO).

Figure 2a–d show the normalized emitted optical spectrum of CaF2:Eu crystal upon excitation
with UV light. The spectral data are shown along with the sensitivity values of a variety of optical
sensors. Figure 2a,b show mostly the spectral sensitivities of various PMTs and photocathodes used in
nuclear medicine techniques. Figure 2c,d show the spectral sensitivities of various charge-coupled
devices (CCD) and complementary metal–oxide semiconductors (CMOS) used in imaging modalities.
The transition of the Eu ions with oxidation state of +2, in CaF2, from the 4f65d1 levels configuration to
the 4f7 ground state configuration, result in a near ultraviolet, bluish emission maximum at 424 nm,
with a full-width-at-half-maximum (FWHM) of about 29 nm, which is close to previously published
values [89–91].
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Figure 2. CaF2:Eu single crystal emitted spectrum along with the sensitivity of: (a) and (b)
photomultiplier tube (PMTs) and photocathodes, (c) charge-coupled devices (CCDs), (d) complementary
metal–oxide semiconductor (CMOS) sensors, and amorphous hydrogenated silicon photodiodes.
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The spectral matching factor data for CaF2:Eu in conjunction with various optical sensors
used in medical imaging detectors are shown in Table 1. CaF2:Eu is compatible with Multi-Pixel
Photon Counters (MPPC) silicon (Si) PMTs (SMF = 0.96 with Hamamatsu Si PM S10362-11-025U
and S10362-11-100U, SMF = 0.95 with S10985 and S10362-11-050U). Furthermore CaF2:Eu was
compatible with the following photocathodes: the gallium arsenide GaAs (0.95) and the extended
(E-S20) photocathodes (0.94). The same value was found for spectral matching when coupled with
charge-coupled devices (0.94) and the Sensl’s MicroFC-30035 (0.94) silicon PMT. The spectral matching
value for a non-passivated amorphous hydrogenated silicon photodiode (a-Si:H), was 0.92, but only
0.63 with a passivated a-Si:H. It was also found to be compatible with Hamamatsu PS-PMTs, such as the
H8500C-03 (0.91). When coupled with certain types of complementary metal–oxide semiconductors,
the spectral matching value was found to be 0.79.

CaF2:Eu also showed good compatibility with a monolithic (0.25 µm) (0.64) and high-resolution
RadEye complementary metal–oxide semiconductor (0.68), and with a CCD with indium tin oxide
gates with microlenses (0.68).

It was found to have moderate compatibility with Sensl’s silicon photomultiplier MicroFM-10035
(0.61). CaF2:Eu was found to be incompatible with a CCD having polygates (0.18) and a CMOS with
photogate array (0.26).

Table 1. Spectral matching factor data.

Light Sensors CaF2:Eu Light Sensors CaF2:Eu

CCD broadband AR coating 0.94 GaAsP phosphor photocathode 0.52
CCD infrared (IR) anti-reflection (AR) coating 0.54 Extended photocathode (E-S20) 0.94

CMOS hybrid with blue anti-reflection (AR) coating 0.60 Si PM MicroFC-30035-SMT 0.94
Hybrid CMOS blue 0.79 Si PM MicroFB-30035-SMT 0.92

CMOS (monolithic 0.25 µm) 0.64 Si PM MicroFM-10035 0.61
a-Si:H passivated 0.63 Si PM S10985-050C 0.95

a-Si:H_non-passivated 0.92 Si PM S10362-11-025U 0.96
CCD with indium tin oxide (ITO) gates with microlenses 0.68 Si PM S10362-11-050U 0.95

CCD with indium tin oxide (ITO) gates 0.51 Si PM S10362-11-100U 0.96
CCD with poly gates 0.18 Flat panel PS-PMT H8500C-03 0.91

CCD no poly gates LoD 0.34 Flat panel PS-PMT H8500D-03 0.78
CCD with traditional poly gates 0.34 Flat panel PS-PMT H10966A 0.79
CMOS (photogate array 0.5 µm) 0.26 Flat panel PS-PMT H8500C 0.86

CMOS RadEye HR 0.68 Bialkali Photocathode 0.78
GaAs Photocathode 0.95 Multialkali Photocathode 0.81

Figure 3 shows the luminescence efficiency of the 10 × 10 × 10 mm3 CaF2:Eu crystal, degraded
by the spectral matching values when coupled with various optical sensors. Following the results of
Table 1, the highest effective efficiency value was attributed to CaF2:Eu/Hamamatsu MPPC Si-PMT.
The lowest values are shown when matched with certain CCD types with optimum sensitivity toward
the red part of the light spectrum.

Figure 4 shows values for the EAE of the 10-mm thick CaF2:Eu crystal along with a comparison
with LSO and BGO crystals incorporated in commercial imaging units. The difference of all these
values from unity is explained considering that EAE neglects mechanisms of interaction inside the
crystal, such as scattered, characteristic, and bremsstrahlung radiation. The EAE values of CaF2:Eu
crystal (0.82 at 40 kV) were lower than both BGO (0.834 at 40 kV) and LSO (0.875 at 40 kV) due to
the considerably higher density of these materials (7.13 and 7.4 g/cm3, respectively) in respect to the
3.18 g/cm3 of CaF2:Eu. The difference between the absorption efficiency values of CaF2, in respect to
those of LSO and BGO, increases with the increase in X-ray energies. This result is in accordance with
the luminescence efficiency behavior that is shown in Figure 1 for higher energies; thus, this material
would not be efficient for nuclear medicine applications.
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Figure 4. Energy absorption efficiency (EAE) of the CaF2:Eu crystal along with data for LSO and BGO.

4. Conclusions

The absolute luminescence efficiency and the spectral matching of a CaF2:Eu crystal were
investigated in conditions usually met in general radiography. The results were compared with data
of crystals with equal dimensions, which are frequently used in commercial imaging modalities,
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such as LSO and BGO. The examined sample showed optimum efficiency at an X-ray tube voltage
of 80 kV. The luminescence efficiency of the 10 × 10 × 10 mm3 CaF2:Eu sample showed increased
values compared to both LSO and BGO across the examined energy range. The light emitted from the
CaF2:Eu was found to be compatible with commercial photocathodes, charge-coupled devices (CCD),
and SiMTs. CaF2:Eu could be potentially used in radiographic applications due to the promising
absolute efficiency values in the radiographic energy range, as well as the matching of the emitted
light with commercial optical sensors, besides the detection of charged particles and soft gamma rays.
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