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1. Introduction 

Radiation converters (Kandarakis, 2016), are frequently tailor-made for application in non-destructive testing (NDT), 
medical imaging, high energy experiments, optoelectronics, at harsh environments, well-logging, etc. (Kytyr et al., 
2011; Linardatos et al., 2020; Mares et al., 2012; Martini et al., 2018, 2019, 2020; Michail et al., 2016a, 2018a; 
Mykhaylyk et al., 2019; Yanagida et al., 2013). Well known scintillators are NaI, CsI, GSO, BGO, LSO, etc. (Eijk, 
2002; Karpetas et al., 2017; Melcher et al., 1991; Michail et al., 2016b). When used in harsh applications, parameters 
such as radiation or temperature alters their luminescence response (Bisong et al., 2019; Bulatovic et al., 2013; 
Lebedev et al., 2019; Melcher et al., 1991; Patri et al., 2019; Rothkirch et al., 2013; Saxena, 2019). Thus, it is required 
careful selection of their intrinsic properties (Yang et al., 2014). 

An interesting crystal scintillator is Lu3Al5O12, activated by cerium (Ce) (LuAG:Ce) (Hu et al., 2020; Witkiewicz-
Lukaszek et al., 2018). Lu3Al5O12:Ce is a promising relatively new material that has been examined for various 
applications (Chewpraditkul et al., 2009; Chewpraditkul and Moszynski, 2011; Gundacker et al., 2016; Lucchini et 
al., 2018, 2016; Sreebunpeng et al., 2017). The density is 6.73 g/cm3, and the light yield data, published in the literature, 
range from 16700 to 27000 photons/MeV (Li et al., 2005; Liu et al., 2016; Mares et al., 2012; Nikl et al., 2016; 
Sreebunpeng et al., 2017). The emission maximum is at 535 nm (Nikl et al., 2013; Ogiegło et al., 2013). The 
scintillation response is at 69 ns (Swiderski et al., 2009, p. 3). LuAG:Ce energy resolution range is 6.5% at 662 keV 
(Swiderski et al., 2009) and the refractive index is 1.84 (Kobayashi et al., 2012). The thermal conductivity has been 
reported at 9.6 W m-1 K-1, the specific heat is 0.411 J g-1 K-1 and the thermal expansion coefficient is 8.8x10-6 (C-1) 
(Brylew et al., 2013; Kastengren, 2019; Kuwano et al., 2004). LuAG:Ce has been also studied for optoelectronic 
applications in light emitting diodes (LEDs) and for electromagnetic calorimetry (Derdzyan et al., 2012; Ivanovskikh 
et al., 2012; Mares et al., 2012; Nikl et al., 2016; Zorenko et al., 2017). 

In this article, experimental data on the luminescence output of LuAG:Ce are reported and compared against 
previously published data for CdWO4 and CaF2:Eu crystals with increasing temperature (Rutherford et al., 2016; 
Saatsakis et al., 2020b). 

CdWO4 (one of the most widely applied scintillators for various applications) (Ziluei et al., 2017) and CaF2:Eu 
have high melting points at 1325°C (CdWO4), and 1360°C (CaF2:Eu) and are robust to mechanical and thermal shocks, 
which are essential properties for extreme environmental applications (Wang et al., 2018). Their properties are shown 
in Table 1 (Chen, 2008; Dujardin et al., 2018; Eijk, 2002; Eritenko and Tsvetyansky, 2020; Fan et al., 2018; Galashov 
et al., 2014; Lecoq, 2016; Lecoq et al., 2017; Michail et al., 2020; Ruiz-Fuertes et al., 2017; Saatsakis et al., 2020a; 
Ziluei et al., 2017). In previous studies of our group, the luminescence efficiency was measured under typical medical 
X-ray conditions. 

 

Table 1. Comparison of LuAG:Ce, CdWO4 and CaF2:Eu properties (Christos Michail et al., 2020; C. Michail et al., 2020; Michail et al., 2019). 

     Crystal material 

   Lu3Al5O12:Ce CdWO4 CaF2:Eu 
Properties 
Mechanical Units  Value 

Density g/cm³ 6.73 7.9 3.18 
Atomic Number (Effective)  62.9 61-66 16.5 
Melting Point ºK 2020 1325 1360 
Linear Expansion Coeff. C⁻¹ 8.8 x10-⁶ 10.2x10-⁶ 19.5 x 10-⁶ 
Thermal Conductivity Wm⁻¹K⁻¹ 9.6 4.69(@300K) 9.7 
Hardness Mho 8.5 4-4.5 4 
Emission maximum (nm) nm 535 490 435 
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2. Materials and Methods 

All the examined crystal samples (namely LuAG:Ce, CdWO4 and CaF2:Eu) have polished surfaces with equal 
dimensions (10x10x10mm) (Advatech, 2020). They were irradiated using a ΒΜΙ General Medical Merate tube (90 
kVp and 63mAs) in order to measure the light photon intensity dependence with temperature (20 to 120 °C). The X-
ray beam was filtered with an external aluminium filter (2cm), simulating the beam quality alteration by a typical 
human chest (Michail et al., 2018b). The crystal sample was heated up to 120o, using a Perel 3700-9 2000W heating 
gun. The temperature on the crystal surface was monitored using an Extech RH101 infrared digital thermometer (0.1% 
accuracy).  
 

2.1. Luminescence Efficiency 

 
The light flux emitted by the crystal samples upon X-ray irradiation was measured, by placing the crystals at the 

upper port of an integrating sphere (Oriel 70451) coupled at the output port with a photomultiplier (PMT) (EMI 
9798B) (Saatsakis et al., 2020a). The photomultiplier's photocathode (extended S-20) signal was fed to a Sub-
Femtoamp electrometer (Keithley, 6430) (Saatsakis et al., 2019). This set-up was used to measure electrometer's 
electric current to estimate the light flux  : 
 

                               
0

1

PC

elec

s sc

I
( s a ) A


=       (2.1) 

 
Parameters Ielec, sPC, αS, Asc and τ0 were defined in previous publications (Saatsakis et al., 2020a). 

 
Then the light output over the Χ-ray exposure rate of the crystals was calculated as (Michail et al., 2019): 
 

/ X =         (2.2) 
 

Where X  is the exposure rate incident on the crystal. Efficiency-units (EU) are expressed in 
2 1W m /( mR s ) − −  . The S.I. equivalent is 2 1W m /( mGy s ) − −  , where mGy is the corresponding air Kerma.  

 

3. Results and Discussion 

Figure 1 shows the variation of PMT normalized output voltage values (the electrometer sensing voltage was below 
1Vpp) for the LuAG:Ce crystal, with exposure time and temperature. The shape of the curves presented in Fig.1, 
illustrate the exposure of LuAG:Ce crystal to the X-rays emitted from the X-ray tube. As it can be seen in X-ray 
exposure, between 0.0 and 0.4 sec there is a rapid increase of X-ray photons, reaching a plateau between 0.5 and 1 sec 
and then a rapid decrease (1 sec to 1.2 sec). 
The output is relatively stable in the examined temperature range. This finding is clearly depicted in Fig. 2, which 
shows the luminescence output of LuAG:Ce, compared to previously studied scintillation crystals of similar 
dimensions, i.e. CdWO4 and CaF2:Eu, at a temperature range from 20 to 120 °C (AE 26.3 at 20 °C to 26.9 at 120 °C). 
The latter is an indicative temperature range that can be found in logging detectors in which crystals are subjected to 
temperatures in the range from minus 0 °C to more than 200 °C or long-lasting optoelectronic devices (Hu et al., 2015; 
Melcher et al., 1991; Onderisinova et al., 2015; Xiang et al., 2016). Exposure of the scintillator to excessive heating 
or X-ray flux can result in crystal cracking (Kastengren, 2019; Pokluda et al., 2015). 
This finding is in accordance with previously published works for LuAG:Ce in which, as the temperature was 
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increased, the light output of LuAG:Ce sample degraded less than 9%, compared to that at room temperature (Hu et 
al., 2015; Onderisinova et al., 2015; Xiang et al., 2016) showing the improved thermal quenching behavior of this 
material for high power phosphor-converted WLEDs. In the work of Herzog et al. (2020), LuAG:Ce was also found 
stable in this temperature range (Herzog et al., 2020). The thermal quenching behavior of LuAG:Ce was previously 
examined and was found significantly better than other well-known scintillators (Chen et al., 2010; Xu et al., 2018). 
Furthermore, LuAG:Ce in ceramic form was reported with about 3% intensity drop after 1000 h, at 85 °C and 85% 
humidity and thermal quenching with reduction of about 3% at 200 °C (Ji et al., 2015; Xu et al., 2018). According to 
Xu et al., the drop, as response to temperature increase, is directly related to the lattice vibration, which often provides 
the activation energy for non-radiative transitions (Xu et al., 2018). On the other hand the luminescence efficiency of 
CdWO4 and CaF2:Eu constantly decreased, with increasing temperature, for both crystals due to thermal quenching 
(Melcher et al., 1991). The luminescence signal was found in both crystals maximum at the lowest examined 
temperature (23.06 E.U. for CdWO4 and 22.01 E.U. for CaF2:Eu at 22 °C). In the mid-temperature range (50-80 °C) 
CdWO4 shows increased differences compared to CaF2:Eu (Saatsakis et al., 2020a, 2020b). 
 

 

Fig. 1. PMT normalized output voltage values for the LuAG:Ce crystal, with exposure time and temperature. 
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Fig. 2. Comparison between the luminescence efficiency of the examined single crystals in the temperature range from 22 to 120ο C. 

 

4. Conclusions 

In this research, the effect of temperature on the luminescence output of LuAG:Ce, CdWO4 and CaF2:Eu single 
crystals, for applications in harsh environments and optoelectronics, was examined. The luminescence output values 
of LuAG:Ce were found stable in this temperature range, in contrast to CdWO4 and CaF2:Eu which showed a decrease 
down to 77-79% when the crystal surfaces were heated to the maximum operating temperature. The thermal stability 
of LuAG:Ce, in the examined temperature range, renders it a good choice for application in harsh environments as 
well as for long-term operation in high power LEDs. 
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