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Abstract 

Scintillators are radiation converters applied in medical imaging detectors, in applications at harsh environments, including in 
geophysical detectors for deep geology boreholes, non-destructive testing (NDT) in gas and oil facilities, space, marine exploration, 
etc. In this study the luminescence efficiency dependence of single-crystal scintillators was examined with increasing temperature. 
Cadmium tungstate (CdWO4) was examined against calcium fluoride doped with europium (CaF2:Eu).  The dimensions of the 
single crystals' samples were 10x10x10 mm3 and were irradiated using X-ray radiographic exposures (90 kVp, 63mAs) to measure 
the light output with temperature (22 to 128 °C). The luminescence efficiency was found in both cases maximum at the lowest 
examined temperature (23.06 efficiency units-E.U for CdWO4 and 22.01 E.U. for CaF2:Eu, at 22 °C-environmental). With 
increasing temperature, the luminescence efficiency constantly decreased for both crystals due to thermal quenching (5.32 
efficiency units for CdWO4 and 4.43 for CaF2:Eu, at 128 °C). In the mid-range (50-80 °C) CdWO4 shows increased differences 
compared to CaF2:Eu. CdWO4 has a higher density (7.9 g/cm3) and luminescence signal than CaF2:Eu (3.18 g/cm3), thus it is 
suitable, besides medical imaging, also for operation in harsh environments. 
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1. Introduction 

Scintillators are radiation converters (Kandarakis 2016, Salomoni et al. 2018), applied in, medical imaging 
(radiography, computed tomography, positron emission tomography, mammography), at harsh environments, 
including detectors in geophysical research for deep geology boreholes, non-destructive testing (NDT) in gas and oil 
facilities, space, marine exploration, high energy physics, homeland security, etc. (Kytyr et al. 2010, Mares et al. 2012, 
Michail et al. 2016a, Michail et al. 2018a, Hu et al. 2019, Martini et al. 2019, Mykhaylyk et al. 2019). Thousands of 
different crystal scintillators have been produced depending upon the specific application. Some conventional crystal 
scintillators are sodium-iodide, Gadolinium-Oxyorthosilicate, Bismuth-Germinate-Oxide, Lutetium-Oxyorthosilicate, 
Yttrium-Orthoaluminate-Perovskite (Melcher et al. 1991, Van Eijk 2002, Michail et al. 2016b, Karpetas et al. 2017). 
In harsh environmental applications, scintillators are subject to extreme conditions of pressure, temperature, or 
radiation dose rates, resulting in variations in the luminescence output (Melcher et al. 1991, Bulatovic et al. 2013, 
Rothkirch et al. 2013, Bisong et al. 2019, Lebedev et al. 2019, Patri et al. 2019, Saxena et al. 2019). Due to these 
limitations, the detectors that will be used should have properties like adequate light output under elevated temperature, 
chemical stability, suitable mechanical properties, and energy resolution suitable for such conditions (Yang et al. 
2014).  

Cadmium tungstate (CdWO4) is one of the most widely applied scintillators for various applications (Ziluei et al. 
2017). CdWO4 is a very dense scintillating material (ρ= 7.9 g/cm3), with a very short radiation length of 10.6 mm 
(Galashov et al. 2014, Ruiz-Fuertes et al. 2017, Ziluei et al. 2017, Michail et al. 2020). The light yield of CdWO4 can 
be found ranging across a wide range of values upon crystal manufacturer (Table 1) (Lecoq 2017, Ziluei et al. 2017, 
Michail et al. 2020). Some of the CdWO4 advantages may be that it is a low-cost material, non-hygroscopic, and can 
tolerate high rates of radiation (van Eijk 2002, Lecoq 2016, Ziluei et al. 2017, Eritenko et al. 2020). As disadvantages 
may be considered the difficulty of fabricating in large samples and, of course, the existence of cadmium an element 
of considerable toxicity (van Eijk 2002, Lecoq 2016). 

On the other hand, calcium fluoride doped with europium (CaF2:Eu) can be easily found in nature and can be 
manufactured in large quantities at low cost. CaF2:Eu has been used as a single crystal, in medical physics and 
spectroscopic applications, charged particle detection, in the quest for dark-matter, in radiation detectors for low 
energies, solar cell application, homeland security, etc. (Knoll 2000, Chen 2008, Mikhailik and Kraus 2010b, Lecoq 
et al. 2017, Dujardin et al. 2018, Fan et al. 2018, Yanagida 2018). CaF2:Eu offers excellent operational characteristics, 
and it has good properties, for particle or low-energy radiation detectors. Furthermore, it is an excellent choice for 
vacuum applications since it has shallow vapor pressure. The energy resolution of CaF2:Eu do not degrade noticeably 
with temperature. 

  

Table 1. Comparison of CdWO4 and CaF2:Eu single-crystal's intrinsic and mechanical properties (Advatech 2020, Michail et al 2019, Michail et 
al. 2020). 

    Crystal material 

   CdWO4 CaF2:Eu 
Properties 
Mechanical Units Value 

Density g/cm³ 7.9 3.18
Atomic Number (Effective) 61-66 16.5
Melting Point ºK 1325 1360 

Linear Expansion Coeff. C⁻¹ 10.2x10-⁶ 19.5 x 10-⁶ 
Thermal Conductivity Wm⁻¹K⁻¹ 4.69(@300K) 9.7
Hardness Mho 4-4.5 4

Hygroscopic - Όν No 
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Both crystals have high melting points at 1325°C (CdWO4), and 1360°C (CaF2:Eu) and are robust to mechanical 
and thermal shocks, which is essential property for extreme environmental applications (Wang et al. 2018). Thus, 
investigation of these crystals for harsh environmental applications could be of interest. 
 

Table 2. Comparison of CdWO4 and CaF2:Eu single-crystal's optical properties (Advatech 2020, Michail et al. 2019, Michail et al. 2020). 

Crystal properties CdWO4  CaF2:Eu 

Emission maximum (nm) 490  435 

Emission wavelength range (nm) 380-800  395-525 

Decay-time (ns) 5000  950 

Light yield (photons per MeV) 6200-28000  13000-30000 

Photoelectron-yield (percent of NaI:Tl) 30-50  50 

Radiation length (cm) 1.06  3.05 

Refractive-index 2.2-2.3 (@max nm)  1.47 (@435nm) 

 
In this article the luminescence output of CdWO4 is compared with that of CaF2:Eu crystals with increasing 

temperature, upon X-ray irradiation, for applications of detectors in harsh environments (temperature or radiation flux) 
(Rutherford et al. 2016, Saatsakis et al. 2020). The luminescence efficiency was measured under a typical X-ray 
excitation (Koukou et al. 2015). 

 

2. Materials and Methods 

 
CdWO4 and CaF2:Eu crystals of equal dimensions (10x10x10mm) and polished surfaces (Advatech 2020) were 

examined. An X-ray unit (ΒΜΙ General Medical Merate tube) with rotating anode (Tungsten) was used to irradiate 
the crystals using 90 kVp and 63mAs, to measure the light photon intensity dependence with temperature (22 to 128 
°C). The X-ray beam was filtered with an external aluminium filter (20 mm), simulating the beam quality alternation 
by a typical human chest (Michail et al. 2018b). The crystal sample was heated up to 128o, using a Perel 3700-9 
2000W heating gun. The temperature on the crystal surface was monitored using an Extech RH101 infrared digital 
thermometer (0.1% accuracy).  
 

2.1. Luminescence Output 

 
The light flux emitted by the crystal samples upon X-ray irradiation was measured using the following 

methodology. The crystal was placed at the upper port of the integrating sphere (Oriel 70451). In the output port of 
the sphere a photomultiplier (PMT) (EMI 9798B) was coupled (Fig. 1). The photomultiplier's photocathode (extended 
S-20) signal was fed to a Sub-Femtoamp electrometer (Keithley, 6430) (Saatsakis et al. 2019). This set-up was used 
to measure electrometer's electric current in order to estimate the light flux (Table 3): 
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Table 3. Light flux calculation parameters. 

Light flux calculation parameters 

elecI  Electrometer’s current (pA) 

PCs  Photocathode's maximum photosensitivity (pA/W) 

sa  
Spectral matching factor between the emitted light from the
crystal and the sensitivity of the extended S-20 photocathode

scA  Irradiated crystal surface  

0  Integrating sphere's throughput (15.6) 
 

 
Then the light output over the x-ray exposure rate of the crystals was calculated as (Michail et al. 2019): 

 
/ X          (2.2) 

 
Where X  is the exposure rate incident on the crystal. Efficiency-units (EU) are expressed in 

2 1W m /( mR s )    . The S.I. equivalent is 2 1W m /( mGy s )    , where mGy is the corresponding air Kerma.  
 

 
Fig. 1. Luminescence efficiency apparatus. 

 

3. Results and Discussion 

Figure 2 shows luminescence output results for the examined crystal samples at a temperature range from 22 to 128 
°C. This is an indicative temperature range that can be found in logging detectors in which crystals are subjected to 
temperatures in the range from minus 0 °C to more than 200 °C (Melcher et al. 1991). Exposure of the scintillator to 
excessive heating or X-ray flux can result in crystal cracking (Pokluda et al. 2015, Kastengren 2019).  
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Fig. 2. Comparison between the luminescence efficiency of the examined single crystals in the temperature range from 22 to 128ο C. 

 
Figure 2 shows that in the examined crystal samples, the luminescence efficiency is temperature-dependent 
(Kastengren 2019). With increasing temperature, the luminescence efficiency constantly decreased for both crystals 
due to thermal quenching (5.32 efficiency units for CdWO4 and 4.43 for CaF2:Eu, at 128 °C). When the temperature 
increases, the light output decreases, since it is affected by radiation-less transitions whose probability increase with 
temperature, along with possible lattice-defects or impurities that will reduce the signal (Melcher et al. 1991). The 
latter is crucial when large crystal sizes should be prepared. The luminescence signal was found in both crystals 
maximum at the lowest examined temperature (23.06 E.U. for CdWO4 and 22.01 E.U. for CaF2:Eu at 22 °C). In the 
mid-range (50-80 °C) CdWO4 shows increased differences compared to CaF2:Eu. 
 
4. Conclusion 

 
In this research, the effect of temperature on the luminescence output of CdWO4 and CaF2:Eu single crystals, for 

applications in harsh environments, was examined. The luminescence output values of both crystals decrease down to 
77-79% when the crystal surfaces were heated to the maximum operating temperature. Both crystals showed almost 
similar behavior upon temperature, with CdWO4 performing slightly better due to its intrinsic properties, such as the 
higher density (7.9 g/cm3 for CdWO4, 3.18 g/cm3 for CaF2:Eu) and the light output of this crystal. These findings 
could render CdWO4 preferable for applications, besides medical imaging, in applications of crystals at harsh 
environments. 
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