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Abstract 

During the last decades, there is increasing interest in applications of scintillators at harsh environments (i.e., high temperatures 
or radiation fluxes), such as in geophysical detectors for deep geology boreholes, non-destructive testing (NDT) of pipelines in 
oil and gas industry, space and marine exploration, nuclear reactor monitoring, radiation chemistry, etc. To this aim, the current 
study is the first step towards the investigation of the luminescence efficiency dependence of single-crystal scintillators over wide 
temperature ranges. Calcium fluoride doped with europium (CaF2:Eu) was selected due to the fact that it has a high melting point 
at 1418°C and is also robust to mechanical and thermal shocks. The dimensions of the single-crystal sample were 10x10x10 mm3 
, and it was irradiated using typical X-ray radiographic exposures (90 kVp, 63mAs) in order to measure the light photon intensity 
dependence with temperature (22 to 128 °C). The luminescence efficiency was found maximum at the lowest examined 
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1. Introduction 

Scintillators, coupled with optical sensors, are used in various applications in order to convert radiation to light 
(Salomoni et al. 2018, Maddalena et al. 2019). Frequently used crystals are sodium iodide activated with thallium-
NaI:Tl, Bismuth Germinate Oxide-BGO, Yttrium Orthoaluminate Perovskite-YAP, Lutetium Oxyorthosilicate-LSO, 
Gadolinium Oxyorthosilicate-GSO among others (Melcher et al. 1991, Van Eijk 2002, Michail et al. 2016b, 
Karpetas et al. 2017, Kilian et al. 2018). Traditionally, they are used in applications, such as high energy physics, 
homeland security and in medical imaging (i.e., X-ray computed tomography-CT, positron emission tomography-
PET, positron emission mammography-PEM, radiotherapy, radiography, mammography, etc.) (Valentine et al. 1993, 
Nikl et al. 2006, Ogino et al. 2006, Mares et al. 2007, Kamada et al. 2008, Kytyr et al. 2010, Mikhailik and Kraus 
2010a, Yanagida et al. 2010, Alenkov et al. 2011, Blahuta et al. 2011, Yoshikawa et al. 2011, Drozdowski et al. 
2012, Mares et al. 2012, Michail et al. 2016a, Michail et al. 2018a, Hu et al. 2019, Martini et al. 2019, Mykhaylyk et 
al. 2019).  

Besides these applications, scintillators are used for non-destructive testing (NDT) of welds on pipelines and 
pressure vessels in the oil and gas industry. In such applications as well as, in deep geology boreholes, marine 
research, nuclear plants, space exploration, the measurement of the ionizing radiation is subject to extreme 
conditions (pressure, temperature, etc.) (Melcher et al. 1991, Zee et al. 2001, Aksnes 2009, Legrand 2012, Bulatovic 
et al. 2013, Marek et al. 2013, Rothkirch et al. 2013, de Faoite et al. 2015, Bisong et al. 2019, Lebedev et al. 2019, 
Patri et al. 2019, Saxena et al. 2019). Due to these limitations, the detectors that will be used should have properties 
like adequate light output under elevated temperature, chemical stability, mechanical properties, and energy 
resolution for such conditions (Yang et al. 2014).  

An alternative scintillator is europium-activated calcium fluoride (CaF2:Eu), that has been used, in single crystal 
and nanocrystal forms, for medical physics and spectroscopy applications, charged particle detection, in the search 
for dark matter, in low-energy radiation detectors, solar cell application, homeland security, etc. (Holl et al. 1988, 
Bernabei et al. 1997, Knoll 2000, Ely et al. 2005, Wang et al. 2005, Bensalaha et al. 2006, Hong et al. 2007, Chen 
2008, Shimizu et al. 2008, Wang et al. 2009, Mikhailik and Kraus 2010b, Song et al. 2010, Cappella et al. 2013, 
Plettner et al. 2013, Lina et al. 2015, Salah et al. 2015, Lecoq et al. 2017, Cortelletti et al. 2018, Dujardin et al. 2018, 
Fan et al. 2018, Yanagida 2018). CaF2:Eu can be easily found in nature and can be manufactured in large quantities 
at a low cost. Europium-activated calcium fluoride is easily machined, offers excellent operational characteristics, 
such as non-hygroscopicity, inertness, insolubility, and thus can be placed in direct contact with solvent systems 
(solubility 0.0017g/100g H2O) or aqueous solutions (Table 1).  

Table 1. CaF2:Eu single-crystal intrinsic and mechanical properties (data obtained from Advatech website). 

Properties 

Scintillator/Optical 
Units Value 

Properties 

Mechanical 
Units Value 

Wavelength (Max. Emission) Nm 435 Density g/cm³ 3.18 

Wavelength Range Nm 395 – 525 
Atomic Number  

(Effective) 
 16.5 

Decay Time Ns 950 Melting Point ºK 1360 

Light Yield photons/keV 30 
Linear Expansion  

Coefficient 
C⁻ ¹ 19.5 x 10‾⁶  

Photoelectron Yield % of NaI(Tl) 50 Thermal Conductivity Wm⁻ ¹K⁻ ¹ 9.7 

Radiation Length Cm 3.05 Crystal Structure  Cubical 

Optical Transmission µm 0.13 -10µm Hardness Mho 4 

Transmittance % TBA Hygroscopic  No 

Refractive Index 
 

1.47 (@ 435nm) Solubility g/100gH₂ 0 0.0017 

Reflection Loss/Surface % 5.4    
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When used in particle or low energy radiation detectors, it exhibits good mechanical properties; in combination 
with its very low vapour pressure, it is well suited for use within vacuums. Its robustness to thermal and mechanical 
shock, with a high melting point (1418°C), is an essential fact for extreme environmental applications. The low 
inherent background radiation of CaF2:Eu is also another important characteristic. The energy resolution is 5.7-6.07 
% at 662 keV for a scintillator with such a low-Z. The energy resolution of CaF2:Eu does not degrade noticeably 
with temperature. Thus, investigation of this crystals for harsh environmental applications could be of interest (Heath 
et al. 1979, Holl et al. 1988, Belli et al. 1999, Knoll 2000, Maushake 2008, Shimizu et al. 2008, Plettner et al. 2013, 
Sasidharan et al. 2013, Nakamura et al. 2017, Wang et al. 2018). 

The purpose of the present study was to investigate the temperature dependence of a CaF2:Eu single crystal, under 
X-ray excitation, for applications of detectors in harsh environments (temperature or radiation flux) (Rutherford et 
al. 2016). To this aim, experimental measurements of the absolute luminescence efficiency (AE-light energy flux 
over exposure rate) were performed under typical X-ray excitation in X-ray radiographic exposures (Koukou et al. 
2015) in order to measure the light photon intensity dependence with temperature. 

2. Materials and methods 

The CaF2:Eu single crystal sample was purchased from Advatech UK Limited with dimensions 10x10x10mm 
(Advatech 2020). All crystal sample surfaces were polished. The crystal was exposed to X-rays on a ΒΜΙ General 
Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al, at typical 
radiographic energy (90 kVp, 63mAs) in order to measure the light photon intensity dependence with temperature 
(22 to 128 °C). An additional 20 mm filtration was introduced in the beam to simulate beam quality alternation by 
the human body (Michail et al. 2018b). The crystal sample was heated using a Perel 3700-9 2000W heating gun up 
to 128o. The temperature on the crystal surface was monitored using an Extech RH101 infrared digital thermometer 
(0.1% accuracy).  

 

 
Fig. 1. Experimental setup for the X-ray irradiation of the heated CaF2:Eu single crystal. 

2.1. Absolute Luminescence Efficiency 

The light emission efficiency of a phosphor may be experimentally estimated under X-ray imaging conditions, by 
determining the absolute luminescence efficiency (AE) defined by (2.1) (Michail et al. 2019): 
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/ X    (1) 

where   is the emitted light energy flux (energy of light per unit of area and time), X  is the incident exposure 
rate that excites the phosphor to luminescence. AE is traditionally expressed in units of 2 1W m /( mR s )     

thereafter referred to as efficiency units (E.U.). The S.I. equivalent of this unit is given in 2 1W m /( mGy s )    , 
where mGy stands for the corresponding air Kerma. The light flux measurements were performed using an 
experimental set up comprising a light integration sphere (Oriel 70451) coupled to a photomultiplier (PMT) (EMI 
9798B), which was connected to a Cary 401 vibrating reed electrometer. The photomultiplier was coupled to the 
output port of the integrating sphere in order to reduce experimental errors due to illumination non-uniformities. The 
crystal was positioned at the input port of the integrating sphere, whereas the photomultiplier was adapted at the 
output port (Fig. 1) (Michail et al. 2010). The photocathode of the photomultiplier (extended S-20) was directly 
connected to a Keithley Model 6430 Sub-Femtoamp Remote SourceMeter (Keithley Instruments Inc., Cleveland, 
OH, USA) electric current meter (Saatsakis et al. 2019).  

The light flux of the screens was finally determined after corrections on the experimental data according to the 
following formula: 

0

1

PC

elec

s sc

I
( s a ) A


   (2) 

elecI  is the current at the output of the electrometer (in pA), PCs  is the peak photosensitivity of the photocathode 

(in pA/W), which was used as a factor converting the output photocathode current into light energy flux. sa  is the 
spectral matching factor of the screen’s emission spectrum to the spectral sensitivity of the photocathode (extended 
S-20) used to correct for the spectral mismatches between the emitted light and the spectral sensitivity of the 
photocathode (extended S-20) of the photomultiplier. scA  is the irradiated area of the screen. τ0 denotes the 
throughput of the integrating sphere, which is expressed by the ratio: 

0 1 1
e o e sc
i o p sc

A / A
( ( A / A ))

 


 
 

 
   (3) 

Ψe is the total light flux at the exit (output) port of the integrating sphere, Ψi is the total flux at the input port, Ae is 
the area of the exit port, Ap is the sum of all port areas, and ρ0 denotes the reflectance of the internal sphere wall. 
Using the setup of Fig. 1 and prototype light-emitting diodes (LED, Kingbright Company), the total throughput of 
the apparatus was calculated by also taking into account specific data on Ae, Asc, Ap,ρ0) given by the manufacturer’s 
datasheet. The estimated throughput value was then τ0=15.6. 

3. Results and discussion 

Table 2 shows quality control results on the X-ray unit that was used for the experimental procedure. For all 
measurements 1 second of irradiation at 63 mAs was maintained. Tube voltage was varied from 50 to 130 kVp, and 
an external aluminum filtration of 20 mm was used. As can be depicted from Table 2, the kVp accuracy of the 
radiographic X-ray tube is below 3.5% well within the suggested limits (European Union 2012, AAPM 2015).  

Figure 2 shows absolute luminescence efficiency results for the examined crystal sample at various temperatures 
(22 to 128 °C). This temperature range is indicative since, for example, crystals in logging detectors are subjected to 
temperatures from below 0 °C to above 200 °C Melcher et al. (1991). Exposure of the scintillator to excessive 
heating or X-ray flux can result in crystal cracking (Pokluda et al. 2015, Kastengren 2019).  

As can be depicted frοm Figure 2, the luminescence efficiency is temperature dependent (Kastengren 2019). The 
luminescence efficiency decreases with increasing temperature since light output is also affected by radiation-less 
transitions whose probability increase with temperature (Melcher et al. 1991). Furthermore, possible impurities and 
lattice defects, reduce the scintillation signal. 
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 Table 2. X-ray Tube output measurements with the Piranha (RTI) dosimeter. 

kVp nominal kVp measured msec mGy mGy/sec HVL Total filtration (mm) 

50 49.59 999.2 0.03586 0.03583 4.41 23 

60 60.59 999.2 0.1146 0.1144 5.58 22 

70 69.92 999.2 0.2481 0.2478 6.65 24 

80 80.68 999.2 0.4522 0.4514 7.53 22 

90 91.68 999.7 0.7323 0.7314 8.36 22 

100 101.64 999.2 1.086 1.083 9.05 23 

110 111.9 999.2 1.512 1.507 9.68 23 

120 122.98 999.2 2.016 2.011 10.3 24 

130 126.02 999.7 2.275 2.269 10.4 24 

 
Fig. 2. Absolute luminescence efficiency of the heated CaF2:Eu single crystal (90 kVp). 

This is important, especially in applications requiring crystals of large dimensions. The luminescence efficiency 
was found maximum at the lowest examined temperature (22.01 efficiency units-E.U. at 22 °C-environmental). 
With increasing temperature, the luminescence efficiency decreased almost exponentially due to thermal quenching 
(4.43 efficiency units-E.U. at 128 °C). These results are indicative of the performance of the crystals in applications 
in harsh environments, such as in space exploration. For example, spacecraft which approach the Sun should be 
extremely resource limited in both mass and power since they will face harsh environments (radiation levels and 
increased temperature) regarding the onboard instrumentation. In this case, detectors that need little or no cooling, 
lasting on high radiation fluxes, will be able to succeed in the mission goals. 

4. Conclusion 

In this research, an initial investigation of the effect of temperature on the luminescence efficiency properties of 
Calcium Fluoride (Eu) single crystal scintillators, for applications in harsh environments, was performed. From the 
measured luminescence efficiency values, a decrease of the order of almost 80% was observed when the crystal 
surface was heated to the maximum temperature value of this experiment. Thus, it is crucial to use crystals showing 
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resistance to high temperatures for various applications. Further experimentation of such scintillating materials to 
temperatures above and way below the temperatures incorporated in this initial research, need to be carried out in 
order to establish their effectiveness in applications under harsh temperature conditions. 
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