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1. An alternative storage strategy

Storage of red blood cells (RBCs) at extremely low temperatures (at
−65 to −196 °C) is an alternative to liquid hypothermic storage (at 4-6
°C). It offers prolonged cellular longevity through halting of biological
activities [1]. Freezing, however, is associated with irreversible damage
to living cells [2,3]. Depending on the cooling rate, ice crystals may be
formed extracellular (slow rate) or intracellular (high rate). Moreover,
passage of cells along the intermediate temperature zone (approx. be-
tween -10 to -60 °C) damages the membrane permeability [4]. Conse-
quently, cryoprotective additives are pivotal, with nontoxic glycerol
being the most widely used for RBC cryopreservation. [5]. It enters cells
via facilitated transport and limits ice crystal formation, solute effects
and dehydration [6].Its concentration varies according to the freezing
protocol: at slow cooling rates a high glycerol concentration is used to
counteract osmotic imbalance, while at high cooling rates glycerol is
needed at lower concentration [7]. Two methods are developed ac-
cordingly for clinical use: the high glycerol method (HGM) and the low
glycerol method (LGM). In the first one (used in North America), RBCs
are frozen slowly (1-3 °C/min), stored at temperatures between -60 and
−80 °C in 40-50% w/v glycerol and thus, thawing is long [1]. The LGM
protocol (used in Europe) is based on the rapid freeze (>100 °C/min) of
RBCs and their cryopreservation at temperatures below −140 °C after
addition of 15-20% w/v glycerol [8]. Regardless the method of choice,
cryopreservation includes three obligatory steps: a) Glycerolization and

cooling, b) Storage and, c) Thawing and deglycerolization needed to
prevent intravascular osmotic hemolysis of glycerol-laden RBC on
contact with plasma [9] and consequently, free Hb toxicity [10].

Time plays a central role in determining the quality of cryostored
RBCs, but unlike hypothermic storage, the right processing time and
other parameters of sample preparation account more for it compared
to the storage duration per se [11,12]. Rapid thawing is necessary to
prevent ice crystal growth (“recrystallization”) upon warming [13], and
RBCs must be deglycerolized shortly after that because glycerol inter-
feres with the metabolism of liquid-stored RBCs. This is not as easy as it
seems due to high intracellular concentration of glycerol and its slow
rate of osmosis relatively to water. The osmotically stressful process of
glycerol removal can be as damaging to RBCs [14] as the cooling/
thawing steps.

Finally, however, the quality of frozen RBCs is in compliance with
international transfusion regulations and guidelines [7]. RBCs are cur-
rently frozen within 7 days after donation, stored up to 10 years (or
longer [11]) and are available for transfusion within 1, 7 or 14-21 days
(depending on freezing method, glycerol concentration and additive
solution) after thawing and washing [15]. Washing was initially char-
acterized by long processing time that hampered the actual use of RBCs
in emergency setting. Moreover, it posed significant risks for bacterial
contamination that substantially shorted the postthaw storage period.
The introduction of fully closed automated cell processors made the
glycerolization/deglycerolization steps shorter and safer and rendered
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frozen RBCs more utilizable for clinical practice [16,17]. To date,
however, cryopreserved RBCs are infrequently implemented in trans-
fusion medicine, being mostly used in special transfusion circumstances
[18]. What’s keeping us from moving on to this promising technology?
Are there any good reasons to take this step?

2. To freeze or not to freeze

The main advantage of frozen RBCs is their impressively extended
storage life. Since blood donation is voluntary, an “eternal” stock of
RBC units could be especially useful in periods of supply-and-demand
imbalances [19]. In emergency situations the need for blood is im-
mediate. Unfortunately, even with the latest technology, it takes about
an hour to prepare a frozen unit for transfusion [20]. In addition, the
shelf-life of thawed RBCs is shorter compared to that of refrigerated
RBCs, while the need for specialized instruments and processing raises
substantially the cost compared to the liquid preservation [21].

Despite those practical drawbacks, cryopreservation is useful in
maintaining an inventory of phenotypically rare RBCs [22]. Blood
centers around the world and international rare donor networks collect
and cryopreserve RBCs of uncommon blood types [23]. Storage of au-
tologous blood for imminent transfusion is also benefitted by cryopre-
servation. Despite the associated risks [24], autologous transfusion may
be a choice for patients susceptible to the negative effects of allogenic
transfusion, including patients with alloantibodies, surgical tumors and
kidney transplants [21]. Frozen autologous RBCs seem to be superior to
the refrigerated RBCs, in regard to net gain in Hb post transfusion [25].

Another issue is related to the storage lesion and its potential clin-
ical consequences [26]: do we “freeze” the storage lesion along with the
RBCs? It seems that the answer is yes, since the storage lesion itself
appears to be limited to the short pre-freezing period [27]. Thus, classic
biochemical defects and cellular aggregability are not as evident in the
cryopreserved RBCs compared to the refrigerated RBCs, while cellular
deformability is equal between the two strategies [12,28]. Moreover,
cryopreservation does not induce the appearance of stress or removal
markers (e.g. caspase activation [28], CD47 antigen expression [29]),
neither promotes microvesiculation [30].

Despite that, cryopreservation itself affects the ion homeostasis and
integrity of RBCs [28]. The deglycerolization/washing steps leave cells
with decreased intracellular pH [31] and increased susceptibility to
osmotic hemolysis [12]. It seems that the initial pause of the storage
lesion is followed by an acceleration of it post thawing, which limits the
shelf-life of thawed RBCs. Cryoinjuries or subhemolytic damages of
deglycerolized RBCs could weaken their capability of enduring storage
stress [32]. In spite of that, the increased extracellular Hb observed
immediately post thawing [31] is removed by the subsequent washing
steps, along with other soluble biological response modifiers (like cy-
tokines and potassium [7]) linked to side effects of transfusion [26].

Finally, there is laboratory and clinical evidence that transfusion of
cryopreserved RBCs is both safe and effective in several recipient set-
tings, including trauma patients [33] and acute sickle cell disease [34].
In particular, tissue oxygenation was found superior in both obese [35]
and stable trauma [36] patients receiving cryopreserved RBCs com-
pared to those receiving refrigerated RBCs. Frozen RBCs further present
lower levels of inflammatory markers [19]. The rapid extracellular
hemolysis observed following transfusion of autologous cryopreserved
RBCs is not accompanied by increased production of proinflammatory
cytokines [37].

3. New entries in the cryofield

The main challenges in cryopreservation include, but are not limited
to a) the endurance of RBCs while cooling/thawing (intermediate
temperature zone effect) [4], b) crystallization during cooling and re-
crystallization when thawing [13], and c) significant hypo-osmotic
hemolysis during deglycerolization [31]. Several novel cryo-protocols

and cryoprotectants have been tested for the optimization of “frozen
blood techniques” the last 5-10 years. By using interrupted graded
freezing, Poisson et al. [38] demonstrated that post-thaw RBC integrity
of glycerol-preserved RBCs was progressively decreased between -25
and −30 °C while addition of non-permeating small molecule ice re-
crystalization inhibitors, like aryl-glycosides, synergistically improved
RBC integrity up to 55%.

Besides glycerol, several non-permeating (polyvinylpyrrolidone,
glycols, sugars) or permeating additives have been proposed to replace
or accompany glycerol’s role in RBC integrity. In line with the current
trend of using natural products for “medical” purposes, replacement of
glycerol with zwitterionic betaine, a natural plant cryoprotectant, re-
sulted in about 80% of post-thaw RBC integrity rate [39]. A combina-
tion of other natural cryoprotectants, such as the permeating L-proline
and the non-permeating trehalose, limited the degree of post thaw
hemolysis by decreasing the freezing points and inhibiting ice crystal
formation [40]. Trehalose is an “old player” in this “cryo-game”, but
still relevant as its synergistic effect with hydroxyethyl starch is com-
parable to that of glycerol [41]. At the same time, attempts of in-
creasing trehalose uptake in RBCs via liposomes [41] or apatite nano-
particles [42] seem promising in terms of RBC recovery. In addition,
when using dextran as the extracellular protectant, pre-freeze incuba-
tion of human RBCs with various sugars (e.g. glucose) resulted not only
in differential modulation of the postthaw recovery, but also in equal
post-transfusion recovery in a mouse model [43]. Finally, synthetic
mimics of anti-freeze proteins (including the FDA approved -for dietary
use- polyvinyl alcohol) are being investigated [44] but none of them
has been licensed for clinical use.

Another field of research focuses on slight modification of the
standard procedure in favor of a) RBC stability mainly during degly-
cerolization, b) method simplification and c) special needs. For in-
stance, omission of prefreeze removal of excess glycerol [45] or spliting
of blood units into pediatric units and consequent adjustment to a
higher hematocrit [46] resulted in increased stability and low hemo-
lysis and potassium, respectively. Furthermore, since deglycerolization
leads to RBC loss, optimization of the existing protocols through re-
ducing the washing duration by applying a mathematical formula [47],
changing NaCl concentration for postwashing [48], and introducing a
new dilution-filtration system [49] may represent promising alter-
natives. When small volumes of blood need to be frozen (mainly for
future serological tests), droplet freezing, a method for RBC preserva-
tion in small, individual droplets is common. This technique minimally
affects RBC antigenicity [50], while the recovery of poly-
vinylpyrrolidone supplemented RBCs is acceptable [51]. Last, but not
least, freeze drying (lyophilization) of RBCs has been suggested as an
alternative way to overtake problems like the complicated transporta-
tion of frozen samples. Such a task is far from simple because it pre-
supposes novel lyophilization techniques and combination of CPAs
[52]. However, it would allow the storage of low weight samples at
room temperature.

4. What next

The uncontested usefulness of cryopreservation in special transfu-
sion circumstances and the increasing needs for blood transfusion
globally have reawakened the interest of the scientific community in
frozen blood. However, we know but the basics about its biochemistry,
efficacy and effects. RBC assessment following cryopreservation has to
be expanded from classic (though necessary) in vitro analyses (hemo-
lysis etc.) [11,12,31] and recovery [53] to equally important ex vivo and
in vivo biological activities and physiological functions (e.g. vasor-
eactivity, flow dynamics, metabolism). Those aspects have been re-
cently examined in a new cryopreservation protocol optimized to serve
RBC research purposes [8]. The contemporary era of transfusion med-
icine has been marked by the introduction of new concepts (e.g. up-
dated quality criteria, donor variation effects) and new analytical tools,
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including the so-called “omics” technologies, which have offered better
understanding of the RBC storage lesion and its clinical relevance. In-
depth analysis of the biochemical and metabolic properties of frozen
RBC may reveal currently unknown strengths/ weaknesses and possi-
bilities for improvement. A metabolomics analysis recently revealed
that rejuvenation is very effective for old stored refrigerated RBCs fol-
lowing cryopreservation, due to an impressive metabolic reprogram-
ming [54], suggesting the possibility of extending storage for precious
RBC units at outdate.

Current evidence suggested the presence of RBC sub-populations
(e.g., oldest cells [31]) less resilient to cryopreservation-related in-
juries. The high variability in the glycerol permeability of the RBC
membrane, and thus in the hemolysis after deglycerolization, between
donors and within cells from the same donor [55], is further indicative
of samples with low responsiveness to cryopreservation. In similarity to
the currently known donor effects on the refrigerated storage lesion
[56], small-scale studies at first, and then large donor-recipient cohorts
studies are needed to understand the impact of donor factors on the
efficacy and safety of frozen RBCs. Clinical trials and head-to-head
comparisons between refrigerated and cryopreserved RBCs [33,35,36]
are further needed to support the suitability of the latter for transfusion
in the surgical, pediatric, and massively/repeatedly transfused patients.
Deep understanding of those effects will be necessary in developing
optimized cryopreservation protocols and standardized processing
systems that may allow expansion of frozen RBC repository to common
clinical settings and personalization of blood donation.

Such contemporary research, however, would not be enough to
define the utilization of frozen RBCs in the future. Refrigerated storage
is nowadays better understood and continuously improved. Information
systems and lists of available donors, for example, are increasingly used
globally to manage the phenotypically rare units within the inventory
of liquid RBCs. Moreover, while frozen RBCs stored for long can be used
to balance inventory in times of crisis, severe safety issues (absence of
up-to-date testing) would prohibit their use in a potential emerging
pathogen crisis. A series of similar considerations and logistics could
restrain companies from investing in frozen RBC technologies, even
though such a prospect would mark a substantial shift in transfusion
practices. No doubt, a blood banking system supported by both re-
frigerated and frozen RBCs would be unique by its capacity to offer the
highest-quality components to patients, free of stochastic variations in
donor availability and transfusion needs. By today’s standards, how-
ever, the popularity of frozen RBCs in the future is not an easy guess for
neither transfusion clinicians nor researchers.
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