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ABSTRACT 

Blood transfusion is a procedure that enables us to save lives every day. In Switzerland, 221'100 red 

cell concentrates, 38'947 platelet concentrates, and 30'552 units of fresh frozen plasma have been 

used in 2018 (Swiss Transfusion SRC). Red Blood Cells (RBCs), once separated from other blood 

components, can be stored for several weeks (generally between 6 and 7) at 4°C in gas-permeable 

plastic bags. To this end, an additive solution containing all necessary elements for cell survival is 

routinely added. Such storage conditions, however, differ from the physiological environment in which 

cells naturally live, leading to metabolic, oxidative and functional changes called RBC "storage lesions" 

which can be irreversible and progressively accumulate after transfusion. 

 As of today, scientific consensus has not been reached concerning the clinical impact of these 

RBC storage lesions. In fact, some studies demonstrated that patients transfused with “old” blood, i.e. 

close to expiration date, have an increased risk of developing transfusion-related adverse effects, 

whereas others showed no such correlations. The only certainty is that such RBCs no longer have their 

original properties, potentially reducing their effectiveness. In this context, this thesis aims at 

proposing novel cheaper ways of improving RBC storage, thereby improving the quality of transfusions 

for patients. 

 The first part of this thesis provides a deeper understanding of the causes and mechanisms 

linked to storage lesions. Using a variety of measurement tools, key parameters of RBC metabolism, 

antioxidant defenses, and morphology, are reported. The analysis of this data demonstrates that RBCs 

are prematurely impacted by changes in their environment, including depletion of the uric acid 

naturally present in high concentration in blood plasma. Based on these results, improvements to 

storage solutions are proposed. In particular, the effect of adding uric acid with or without vitamin C 

is tested. Results show significant improvements at level of the cell metabolism, suggesting that 

proposed treatments are effective. However, limited changes are found for other parameters such as 

hemolysis, raising the question of dosage and efficacy. To address this issue, the second part of this 

thesis is devoted to the development of an assay compatible with high-throughput screening to quickly 

and easily evaluate antioxidant properties of a wide range of molecules. This test provides a way to 

better define the amount of chemical or natural compounds to add in blood bags to have a positive 

impact on the aging of RBCs in storage units to prolong the quality of transfusions for patients. 
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RÉSUMÉ 

La transfusion sanguine est une procédure qui permet de sauver des vies quotidiennement. En Suisse, 

221'100 concentrés érythrocytaires, 38'947 concentrés thrombocytaires et 30'552 unités de plasma 

frais congelés ont ainsi été consommés en 2018 (Transfusion CRS Suisse). Les globules rouges (GR) une 

fois séparés des autres composants sanguins peuvent être conservés plusieurs semaines 

(généralement entre 6 et 7) à 4°C dans une poche plastique perméable aux gaz. Pour ce faire, une 

solution additive contenant les éléments nécessaires à leur survie est ajoutée. Ces conditions de 

stockage diffèrent de l’environnement physiologique dans lequel ces cellules évoluent normalement. 

Au cours du temps des lésions métaboliques, oxydatives et fonctionnelles, qui peuvent être réversibles 

ou irréversibles après transfusion, communément nommées « lésions de stockage des GR » 

s’accumulent. 

 La communauté scientifique n’est aujourd’hui pas unanime sur la question de l’impact clinique 

de ces lésions sur le patient traité. En effet, certaines études ont démontré que les receveurs du sang 

« vieux », c’est-à-dire proche de la péremption, couraient un risque accru de développer des effets 

indésirables en lien avec la transfusion, alors que d’autres travaux n’ont montré aucune corrélation. 

La certitude qui demeure néanmoins est que ces GR n’ont plus les mêmes propriétés, réduisant ainsi 

potentiellement leur efficacité. C’est dans ce contexte que s’inscrit cette thèse de doctorat dont le but 

fût de proposer de nouvelles solutions simples et peu coûteuses permettant d’améliorer le stockage 

des GR, et ainsi la qualité du produit pour le patient. 

La première partie de ce travail a consisté à acquérir une meilleure compréhension des causes 

et mécanismes liés à ces lésions. Les différents outils utilisés ont permis de suivre l’évolution de 

paramètres reflétant le métabolisme, les défenses antioxydantes et la morphologie cellulaire. Cette 

étude a notamment démontré que les GR étaient impactés précocement par le changement de leur 

milieu et notamment la déplétion de l’acide urique contenu dans le plasma. C’est sur la base de ces 

observations que diverses modifications de la composition de la solution de stockage furent ensuite 

proposées. L’effet de l’ajout d’acide urique avec ou sans vitamine C a ainsi été testé. Les résultats ont 

montré des modifications significatives au niveau du métabolisme cellulaire, suggérant un effet du 

traitement, mais des effets limités sur d’autres paramètres telle que l’hémolyse. Ces résultats ont 

soulevé la question de la dose et de l’efficacité. C’est pourquoi, la dernière partie de cette thèse fut 

consacrée au développement d’un test (compatible avec le criblage à haut débit) permettant d’évaluer 

rapidement et simplement les propriétés antioxydantes d’un large panel de composés. Ce test devrait 

également permettre de mieux définir la quantité de molécule à ajouter afin d’avoir un impact réel sur 

le vieillissement des GR dans les poches de stockage, et ainsi d’assurer un produit de qualité constante 

pour le patient transfusé. 
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Blood transfusion consists in administrating a labile blood product by venous route. It is a life-saving 

procedure which required, in 2018 and in Switzerland alone, 221’100 Red Cell Concentrates (RCCs), 

38’947 Platelet Concentrates (PCs) and 30’552 Fresh Frozen Plasma (FFP) units1. Worldwide, around 

117.4 million blood donations are collected every year, according to the World Health Organization  

WHO)2. 

Types of blood products and indications 

Two different procedures exist for blood collection, i.e. whole blood donation or apheresis 

(plasmapheresis, thrombocytapheresis, erythrocytapheresis, or combined apheresis). Various labile 

blood products, i.e. RCCs or suspensions, PCs and plasma (e.g. FFP units), can be prepared from 

human whole blood, with differences between countries. It should be emphasized that, in 

Switzerland since 1999, every standard blood preparation is leuko-depleted and subjected to at least 

the following tests: anti-HIV (Human Immunodeficiency Virus) and HIV-NAT (Nucleic Acid Test), anti-

HCV (Hepatitis C Virus) and HCV-NAT, HBV (Hepatitis B Virus) antigen and HBV-NAT, anti-treponema 

pallidum, and blood group (ABO/Rhesus D) determination3. Each labile blood product has specific 

storage conditions and given indications4. 

Transfusion of Red Blood Cells (RBCs) is indicated for patients suffering from insufficient 

oxygen (O2) delivery to organs and tissues. Anemia can be caused by acute or chronic blood loss (e.g. 

trauma or surgery), deficiency in RBC production (e.g. defects in erythropoiesis due to a lack of 

folate, iron or Erythropoietin [EPO] hormone), cancer (the co-morbidities, the cancer itself or the 

treatment)5, or RBC destruction (e.g. in Sickle Cell Disease [SCD]). In some cases, massive or exchange 

blood transfusion is also a means to reduce the incidence of damaged cells in circulation by diluting 

the endogenous RBCs or repressing the patient erythropoiesis6–8. RCCs are stored between 2 and 6°C 

(which limits bacterial growth), for up to 6 or 7 weeks, depending on the additive solution used (e.g. 

42 days in Saline-Adenine-Glucose-Mannitol [SAGM], or 49 days in Phosphate-Adenine-Glucose-

Guanosine-Saline-Mannitol [PAGGSM]). Cryopreservation of RBCs is also used in specific 

circumstances, for example to maintain an inventory of rare RBC units9. 

Platelets are used to prevent (prophylactic) or treat (therapeutic) bleeding due to 

thrombocytopenia or a platelet function defect, e.g. in patients having a hemato-oncological disease, 

or undergoing major cardiovascular surgery. The PCs are either produced from a pool of buffy coat 

(multiple donors), or from an apheresis procedure (single-donor). They can be kept during 5 to 7 days 

at room temperature (20 to 24°C) under gentle agitation10. To reduce the risks associated with 

bacterial or unknown/unscreened pathogen contamination, blood banks have different pathogen 

inactivation technologies at their disposal, such as the INTERCEPTä system (Cerus Corporation), 

which takes advantage of amotosalen and UVA radiation to induce cross-linking of nucleic acids; the 
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Mirasolâ system (Terumo BCT), which uses riboflavin, a photosensitizer, to generate Reactive Oxygen 

Species (ROS) upon UV illumination, or the THERAFLEXâ UV-Platelets system (Macopharma), which 

uses only UVC light11. Different products are currently under development, such as the 

cryopreserved, thermocycled, or dried platelets. Storing the platelets at 4°C could also become a 

valuable alternative. Indeed, in addition to being less prone to contamination and to potentially 

having a longer shelf life, such platelets were shown to retain a more acute capacity for hemostasis, 

and are therefore particularly indicated in emergency situations12. Cold-stored platelets, however, 

have a shorter time of recirculation, which makes them less interesting for prophylaxis, e.g. in 

hemato-oncology. Therefore, why not take a step towards personalized medicine by giving products 

most suited to each situation rather than simply continuing to apply the current “one-size-fits-all” 

approach?13. 

The third labile blood product available for transfusion is the plasma, kept for example as a 

quarantine plasma (q-FFP), during a minimum of 4 months after blood donation, or pathogen 

inactivated (pi-FFP), as such or as a pool of 1 to 6 buffy coats. The FFP can be conserved at -30°C for 2 

years maximum. A commercial product (OctaplasLGâ, Octapharma) produced by pooling 380 to 1500 

L of plasma inactivated by solvent/detergent treatment, is also available on the Swiss market. Plasma 

is transfused in case of coagulation defects subsequent to, e.g. 1) liver disease, 2) anticoagulant 

(warfarin) overdoses, 3) depletion of coagulation factors associated for example with large volume 

transfusions, 4) Disseminated Intravascular Coagulation (DIC), 5) Thrombotic Thrombocytopenic 

Purpura (TTP), or 6) plasma exchange during pregnancy. Freeze-Dried or Lyophilized Plasma (FDP or 

PLYO), such as the licensed and FDA approved French Lyophilized Plasma (FLyP)14, represents an 

alternative to the FFP for the rapid management of trauma as it reduces the administration time 

(does not need to be unfrozen), and resolves key logistic issues, such as preservation temperature 

and time)15. FDP is mainly used by the army, though it can also be valuable in crisis situations such as 

terrorist attacks or natural disasters, and in case of geographic remoteness. The various plasma 

preparations have an influence on coagulation factors with more or less clinical impact16. Similarly, 

transfusion of warm Fresh Whole Blood (wFWB), which can be stored for 6 hours between 20 and 

24°C, is frequently performed during military operations. 

Whole blood transfusions are also a standard in low-income countries where only 50 % of the 

blood is separated into components as compared to 97 % in high-income countries. This product, 

which is indicated in case of massive transfusion or hemorrhagic shock, could replace the stored 

component therapy where whole blood is reconstituted from individual components, i.e. 1 RCC: 1 

FFP: 1 PC, reducing the quantity of anticoagulant and additive solutions transfused to patients17. 

Whole blood can be stored for 21 days in Citrate-Phosphate-Dextrose (CPD) or Citrate-Phosphate-
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double Dextrose (CP2D), or for 35 days in Citrate-Phosphate-Dextrose-Adenine 1 (CPDA-1), between 

1 to 6°C18. 

The near future of transfusion is not the same throughout the world 

Ideally, transfusions should be able to meet all demand, with blood donated by voluntary unpaid 

donors, providing only what is necessary, and offering an excellent quality, perfectly compatible and 

completely safe. Numerous obstacles are still barring the way to reach this goal, and the amount of 

work that remains to be done is not the same in different countries around the world19. Indeed, the 

WHO reported that, in 2015, only 45 % of low-income countries had a national blood policy as 

compared to 79 % for high-income nations, with a blood donation rate of 4.4 donations for 1’000 

people against 32.6, rendering the access to blood difficult, and a screening rate of only 76.2 % in 

comparison to 99.9 %, considerably increasing the prevalence of transfusion-transmitted infections, 

i.e. HIV, HBV, HCV and syphilis. Today, even applications of blood products are different: in low-

income countries, 52 % of transfusions are performed on children under 5 after complications 

related to pregnancy, and to treat childhood anemia, which is often related to malaria and SCD. In 

contrast, blood products in high-income countries are mostly used for supportive care, and primarily 

(in 75 % of cases) for patients over 65 years old. The near future of transfusion in low-income regions 

will therefore be to build the necessary infrastructure, to find the most appropriate procedures (e.g. 

pathogen inactivation of whole blood), and spread the knowledge required for a more effective 

access to safer blood products. 

Instead, the current trend is to reduce blood utilization in wealthier regions of the world. 

Patient Blood Management (PBM) initiatives are implemented by many hospitals to rationalize the 

use of labile blood products to limit costs, but also to decrease residual or unknown risks associated 

with transfusions of human blood products. This goal can be reached by: 1) an efficient diagnostic of 

iron deficiency and anemia, with corrective measures such as supplementation of iron, EPO, ferric 

carboxymaltose, folic acid and/or vitamin B12 before elective surgeries; 2) limiting blood losses 

during hospitalization (reduction in the volume of blood samples taken for biological analyses), or 

during surgeries including less invasive techniques, i.e. optimization of the patient position, 

temperature and pressure, administration of tranexamic acid (fibrine analog that blocks the 

fibrinolysis and reduces bleeding), or via the use of cell salvage devices; 3) optimizing the 

management of post-operative anemia, and implementing more restrictive blood transfusion 

policies, based on the evaluation of clinical criteria instead of the Hemoglobin (Hb) level only20. 

Realizing this ambitious plan will require substantial and continuous improvements in the expertise, 

techniques and equipment used in the field of transfusion. 
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Changing needs and evolving threats in the future of transfusion 

Transfusion will have to adapt to a world in constant evolution. Indeed, demographic changes such 

as global population growth and aging are expected to increase the demand for blood products. In 

2016, Volken et al. predicted a shortage of up to 77’000 RCCs by 2035 in Switzerland alone21. 

Advances made in the medical field also play a role in this issue22: some of the diseases that were 

acute and uncurable in the past have now become chronic, and will therefore require frequent 

transfusions. Today, only 2.8 % of the Swiss population is donating blood, whereas 80 % will need 

some blood product at least once in their life23. The maintenance and renewal of the pools of donors 

are thus a daily challenge which requires to rethink, modernize and adapt recruitment models to 

target people of different ages and cultures. The use of less restrictive blood donation deferral 

policies (e.g. for Men having Sex with Men [MSM], people who came back from a trip, or received a 

transfusion once in their life) could also be an option, provided that security is guaranteed for both 

the donor and the transfused patient. In such cases, improvements in the sensitivity and specificity of 

screening tests and the implementation of global pathogen inactivation procedures could play a 

major role in balancing risks and benefits. 

 In addition, current and upcoming migration crises (political, economic and/or 

environmental) lead to further complications. In particular, intra-ethnic transfusions are complicated 

as the HLA (Human Leukocyte Antigen) diversity correlates with geography. It is especially 

problematic for patients needing chronic transfusion (e.g. SCD patients), for whom a systemic match 

for Rh (C,E,c,e) and K is required to avoid the risks of alloimmunization as much as possible. 

The field of transfusion is also under pressure due to the emergence of new pathogens, as 

well as the outbreak and spread of epidemics. Such events are becoming more likely due to climate 

change, mass agriculture, deforestation and evolving travel habits. Emerging diseases require to 

adapt screening tests on a regular basis to stay one step ahead and avoid crises. Today, the selective 

screening of Malaria, Chagas, and of the West Nile Virus (WNV) has already been implemented at 

Transfusion Interrégionale CRS SA (TIR), and is ready to be deployed on a larger scale if needed. 

Improvements in pathogen inactivation technologies and their applications to RBCs and whole blood 

could also help reduce the threat. Phase III clinical trials were recently completed for the INTERCEPTä 

S-303 system as well as for the Mirasolâ system for pathogen inactivation in RCCs and whole blood24. 

Nevertheless, questions remain regarding the safety and efficiency of pathogen inactivated 

blood products, and the associated costs. As far as safety is concerned, will it require to still perform 

all screening tests to reduce costs once pathogen inactivation is implemented? As for efficiency, is an 

inactivated product equivalent a standard one? 
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Research and innovation at the service of transfusion 

Research and innovation are key to better understand current issues, to develop new tools in the 

field of transfusion, and, hence, to look at the future with more confidence and optimism despite 

potential threats. New discoveries also contribute to the improvement of current practices. A good 

example is the development of personalized medicine: for example, one could imagine to select 

donors with the “best” characteristics (knowing that great biological variability exists), and apply the 

“best” preparation processes and storage conditions, to obtain the “best” product at the “best” time, 

in order to match the “best” specific needs of each patient25. 

To get rid of biological variability and of blood products shortages, artificial blood substitutes 

are currently explored, such as the Hb-Based Oxygen Carriers (HBOCs). However, the different clinical 

trials conducted up to 2008 failed as these substances were shown to interact with endogenous 

Nitric Oxide (NO), triggering unwanted side effects. Today, efforts are made to improve the design of 

HBOCs (e.g. by adding Polyethylene Glycol [PEG] chains to Hb)26. However, such products will not be 

available on the market soon27. 

Another innovation serving similar purposes is the in vitro culture at large scale of RBCs. 

Several research teams are currently working on it, such as the group of Professor Luc Douay and 

EryPharm,28 and a team at the Sanquin Research and Landsteiner Laboratory29,30. Cultured RBCs can 

be produced from different sources of stem cells, i.e. Hematopoietic Stem Cells (HSCs), Embryonic 

Stem Cells (ESCs), or induced Pluripotent Stem Cells (iPSCs). Presumably, the preferred one will be 

immortalized iPSCs selected to present the most universal blood group possible, thus providing blood 

products adapted to most needs. Moreover, cultured RBCs could allow us to get rid of the risks of 

transfusion-related pathogen transmission, to become independent of the donor blood source. 

Currently, a proof of concept for this approach has been demonstrated. The next goal will be to 

upscale the production in larger bioreactors. 

State of the art of red blood cell storage lesions. Why do we need to optimize storage 

conditions?  

As above-mentioned innovations are unlikely to become available in the near future, “traditional” 

blood donation remains relevant. Moreover, once fully developed and authorized for marketing, the 

prices of more innovating products could remain prohibitively high. For example, Prof. Luc Douay and 

his team expect the cost of a single cultured RBC unit to reach about USD 3’000 (in case of routine 

implementation), which is not much for rare blood groups, but completely unpractical for routine 

applications31. 
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This is why optimizing the storage of blood products is a key part of the transfusion problematics. 

Good storage is simply essential as the quality of blood products unavoidably decreases over time in 

blood banks. Degradation can reduce the efficiency of treatments, and possibly be detrimental to 

transfused patients. 

The next sections detail the changes that generically appear in RBCs during storage under 

standard blood bank conditions, i.e. storage at 4°C in additive solutions for 6 to 7 weeks32. 

Effects of storage on red blood cell metabolism 

Non-physiological storage conditions lead to a profound remodeling of the RBC metabolism (Figure 

1). First, because hypothermia modifies metabolic fluxes by reducing reaction rates33. Second, 

because bags in which RBCs are placed with an additive solution is equivalent to a quasi-closed 

environment (only gas exchanges), in which nutrients are progressively consumed and possibly 

depleted, while waste products accumulate inside the cells and in the supernatant. 

The low pH of additive solutions together with the acidification of RCC supernatant 

subsequent to lactate accumulation (glycolysis end-product) induce a negative feedback for 

enzymatic activity34: key metabolites are progressively lost, such as: 1) the O2-Hb affinity regulator 

2,3-Diphosphoglycerate (2,3-DPG), which is depleted after 2 weeks of storage35; 2) the reduced 

Nicotinamide Adenine Dinucleotide (NADH), an essential redox cofactor which is either produced by 

Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) in glycolysis, or from malate by malate 

dehydrogenase; and finally 3) the Adenosine Triphosphate (ATP), which mediates all metabolic 

pathways outside glycolysis and protein activity. Moreover, metabolic remodeling can also be 

triggered by different salvage mechanisms activated by the accumulation of storage lesions. Instead 

of a monotonic decay, the RBC metabolism exhibits three distinct phases during storage, at 0-10 

days, 10-18 days, and after 18 days. This metabolic signature was first identified by Bordbar et al. 

from the analysis with system biology methods of quantitative metabolomics data measured in RCCs 

stored in SAGM36,37. The same trend was observed in other additive solutions such as Additive 

Solution Formula 3 (AS-3)38. 
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Figure 1 – Simplified view of the metabolic pathways in red blood cells (RBCs) related to energy and redox metabolisms. 

[A] Glycolysis, [B] Rapoport-Luebering cycle, [C] Pentose Phosphate Pathway (PPP), [D] purine and GMP (Guanosine 

Monophosphate) metabolism , [E] urea cycle and remnants of Krebs cycle, [F] SAM cycle (S-Adenosylmethionine), [G] GSH 

(reduced Glutathione) synthesis and GSSG (oxidized Glutathione) recycling. 
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The first phase is characterized by an increase of ATP production, likely due to the excess of glucose 

supplemented in SAGM which boosts glycolysis. Anaerobic glycolysis is the main source of ATP (90 %) 

in RBCs, as these cells do not contain mitochondria. Phase 1 is also characterized by an extensive use 

of adenine by the purine metabolism, and by the consumption of methionine in the S-

Adenosylmethionine Cycle (SAM) that forms the homocysteine. This metabolite enters in the 

synthesis of reduced Glutathione (GSH), still active at this stage (glutathione pool increases). In 

addition, methionine was shown to be consumed for the methylation of oxidized isoaspartate 

moieties in asparagine/aspartate residues, and thus contributes to the repair of oxidatively damaged 

proteins39. Next, due to rising oxidative burden, the Pentose Phosphate Pathway (PPP) that takes 

over glycolysis, during the second metabolic phase, tries to restore the cellular redox balance. The 

metabolism of the RBCs was also shown to be modulated by the levels of Oxygenated-Hb (OxyHb or 

HbO2), which increase during storage due to 2,3-DPG depletion40. 
 

 
Figure 2 – Oxygen (O2)-linked modulation of the red blood cell (erythrocyte) metabolism. Taken from Castagnola et al.41. 

HOS: high-oxygenation state, LOS: low-oxygenation state, CDB3: band 3, PFK: phosphofructokinase, Hb: hemoglobin. 

 

Indeed, as shown in Figure 2, in high oxygenation state, HbO2 is released from the N-terminal 

cytoplasmic domain Band 3, which becomes free to bind and thus inhibits different glycolytic 

enzymes, i.e. the Aldolase (ALD), GAPDH, Phosphofructokinase (PFK) and Lactate Dehydrogenase 

(LDH)41,42. Sugars are thus shifted towards the PPP (about two times more active in high oxygenation 

state41), promoting the production of reduced Nicotinamide Adenine Dinucleotide Phosphate 

(NADPH, light green boxes in Figure 1), which is necessary for recycling oxidized Glutathione (GSSG) 

into its reduced form (GSH). Finally, the last metabolic phase is characterized by the release of 

hypoxanthine, when purine bases are not recycled anymore. The Adenosine Monophosphate (AMP) 

metabolism in which glycolysis intermediates are shuttled in phase 2 is inhibited, and AMP is 

catabolized into adenosine and ribose phosphate sugar as a last effort to support glycolysis. 
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Introduction
About fifteen years ago a number of experimental

data on the specific interaction of haemoglobin (Hb)
and various enzymes of the glycolytic pathway with
the cytoplasmatic domain of band 3 protein emerged13.
These data induced our research group to formulate
the hypothesis of a modulation of the erythrocyte
(RBC) metabolism driven by the free energy
connected to the R to T Hb transition4. The general
scheme of this simple model is reported in figure 1.
In this model band 3 protein plays a pivotal role: when
the erythrocyte is at high oxygenation state (HOS)
band 3 interacts with some glycolytic enzymes
(inhibiting their activity) and more glucose is
addressed towards the pentose phosphate pathway
(PPP). When the erythrocyte is at low oxygenation

Figure 1 - Simplified scheme representing the modulation of erythrocyte metabolism by the O
2
 transition of Hb and its

competition with glycolytic enzymes (mainly phosphofructokinase, PFK) for the cytoplasmic domain of band
3 (CDB3). 

state (LOS) the high affinity of deoxy-Hb for the N-
terminal cytoplasmatic domain of band 3 induces the
release of glycolytic enzymes, and thus glucose flux
towards the glycolytic pathway increases. Some recent
results obtained by our and other groups are in
agreement with this simple model, even though they
indicate, that other factors might play a significant
role in this erythrocyte modulation. The aim of this
brief review is to offer to the reader a critical
examination of the significance of these recent results
in light of the model framework.

Band 3 protein
Band 3 is a transmembrane protein that accounts

for about 25% of the total RBC membrane proteins.
It is characterized by three distinct functional domains:
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In conclusion, the metabolic alterations trigger and accelerate a cascade of lesions incurred to RBCs 

during storage. For example, the reduction of ATP levels (a predictor of in vivo recovery of RBCs43) 

impairs many key processes, such as the de novo synthesis of GSH (blue box in Figure 1) and the 

recycling of antioxidants, the maintenance of the ion homeostasis (the Na+/K+ and the Ca2+ pumps 

that are ATP-dependent), and membrane phospholipids asymmetry, leading to modifications of the 

cell morphology and deformability. This suggests that metabolic signatures could provide an 

estimation of the state of RBCs which is more sensitive and precise than with classical hematologic 

analyses. In this vein, Paglia et al.44 proposed 8 biomarkers, i.e. the extracellular levels of lactic acid, 

nicotinamide, 5-oxoproline, xanthine, hypoxanthine, glucose, malic acid, and adenine, which enable 

to differentiate the 3 metabolic phases in SAGM as well as in AS-3, and therefore to estimate the 

metabolic age of stored RBCs. In the future, in silico modeling of dynamic metabolic fluxes using 

omics and system biology will help better understand the ex vivo aging of RBCs, providing tools to 

predict the effects of modified storage conditions more accurately45,46. 

Accumulation of oxidative lesions during storage 

To be fully functional, the antioxidant protective system requires energy, and is therefore negatively 

impacted by the depletion of key cofactors (ATP, NADPH, NADH) associated with storage-related 

metabolic dysregulation. In addition, O2 saturation increases with storage duration, reaching 95 to 

100 % after three weeks of storage. This leads to ROS accumulation reaching a plateau in the same 

timeframe47. Consequently, oxidative forces begin to overwhelm the antioxidant system, leading to a 

state defined as oxidative stress. The following model (Figure 3) was proposed by Dr Julien Delobel to 

describe the pathway and consequences of oxidative stress in stored RBCs48. 
 

 
Figure 3 – Protein carbonylation pathway in the RBCs during storage. Reproduced from the PhD thesis of Dr Julien Delobel. 
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Under physiologic conditions, exogenous and endogenous ROS are reduced by RBC antioxidant 

defenses (phase 1 in Figure 3). However, during storage, the declining metabolism fails to replenish 

essential cofactors, and is thus directly associated with the exhaustion of the antioxidant protective 

system. Specifically, the rapid decline of ATP concentration impairs the de novo synthesis of GSH, 

representing 90 % of the RBC non-enzymatic reducing system. Indeed, ATP is necessary for: 1) the 

uptake of GSH precursors glutamine, glutamate, cysteine and glycine through Na+-dependent 

carriers, and 2) GSH synthesis, which is catalyzed by ATP-dependent glutamate cysteine ligase and 

GSH synthetase. Whillier et al. and Dumaswala et al. reported that 27 ± 6.5 % and 26 % of GSH was 

lost after 6 weeks of storage in leukoreduced SAGM and AS-1 units, respectively49,50. After 10 days of 

storage, the metabolism shifts from anaerobic glycolysis towards PPP. Such metabolic 

reprogramming depends directly on oxidative stress, as shown by Rinalducci et al. and Reisz et 

al.51,52. The latter demonstrated that oxidative modification of redox-sensitive amino acid in the 

glycolytic enzyme GAPDH promoted its association with Band 3, leading to its inactivation. This 

bottleneck in glycolysis in turns promotes PPP to replenish the NADPH pool, which is necessary for 

recycling GSSG into GSH. This compensatory mechanism, however, does not suffice to fully protect 

the cell against the rising oxidative burden, and to compensate the reduction of glutathione 

anabolism. Moreover, glycolysis slowdown negatively impacts on the NADH pool, a co-factor 

required for methemoglobin (metHb) reduction back to OxyHb by the NADH-dependent cytochrome 

b5 metHb reductase. This ferric form of Hb is unable to bind O2 and is rapidly degraded in reversible 

and irreversible hemichromes, and finally in globin and haemin. These compounds can participate in 

the Fenton reaction, further accelerating the accumulation of oxidative stress. Consequently, ROS 

progressively accumulate in stored RBCs, reaching a maximal plateau values after 21 weeks of 

storage, as shown by D’Alessandro et al.47. 

As storage goes on, the balance between the antioxidant defenses and the ROS is 

progressively lost (phase 2). Consequently, the extent of irreversible damages to the cellular 

components increases: lipids peroxidation markers, such as the 8-isoprostane or Malondialdehyde 

(MDA), increase during storage47,53,54. Fu et al. also highlighted the accumulation of Polyunsaturated 

Fatty Acids (PUFA) and their oxidation products oxylipins in RCC supernatants55. Similarly, the level of 

protein carbonylation, an hallmark of protein oxidation, was shown to increase in membrane and 

cytoskeletal proteins48,56–59. Generation of advanced glycation end-products mediated by ROS was 

also reported60. 

Normally, irreversibly oxidized membrane and cytosolic proteins are degraded by the 20S 

proteasome59. Other chaperone proteins, such as the Heat Shock Proteins (HSP) 70, HSP 90, and 

Chaperonin-Containing Tailless complex polypeptide 1 (CCT), combine with misfolded or aggregated 

proteins61. This defense system, however, can be altered after 4 weeks of storage48 (phase 3). A 



 INTRODUCTION 12 

possible explanation could be the following: 1) an extensive cross-linking of over-oxidized proteins 

could inhibit the proteasome; 2) damaged proteins, such as Hb56 or Peroxiredoxin 2 (Prx 2)62, are 

recruited at the cell membrane, and thus become less accessible; and 3) the activity of numerous 

enzymes of the repair/elimination systems requires ATP. 

When the oxidative stress becomes excessive, RBCs begin to lose their functionality and 

integrity. In fact, the progressive accumulation of hemichromes at the membrane was shown to 

induce band 3 clustering63 (phase 4), which constitutes a known eryptosis signal64. Autoxidation of 

the heme close to the membrane further accelerates the oxidation of membrane proteins (phase 5), 

leading to cytoskeletal alterations that impact RBC rheology and causes modifications, i.e. oxidation 

of the CD47 marker, rendering RBCs prone to clearance in vivo. Ultimately, Microvesicles (MVs) 

containing damaged material (such as the carbonylated proteins, which have irreversible post-

translational modifications) are released as a self-protective mechanism (phase 6)65–67. Delobel et al. 

demonstrated that the carbonylation content decreases in the integral membrane fraction between 

the days 29 and 43 of storage, whereas it increases with the same order of magnitude in the RBC-

derived MVs48. 

Alterations of red blood cell rheological properties 

Following the accumulation of lesions, RBC rheological properties, defined by their morphology and 

capacity for deformation, are modified. A main cause is the irreversible membrane loss subsequent 

to the release of vesicles, which was previously shown to constitute a protective mechanism to shed 

oxidized cellular elements. The analysis of the content of vesicles isolated in RCC units showed 

aggregates of Hb, degraded or dimerized band 3, lipid rafts proteins, Fas, FADD, pro-caspases 3 and 

8, and their cleavage products, CD47, IgG and stomatin66–68. RBC-derived vesicles are also produced 

when the interactions between the cytoskeleton and the membrane are disturbed and/or when the 

lipid membrane asymmetry is lost, which occurs when the cation homeostasis is lost due to ATP 

depletion. Indeed, the phospholipid bilayer organization, i.e. maintenance of negatively charged 

Phosphatidylserine (PS) and Phosphatidylethanolamine (PE) in the inner side of the cell membrane, is 

controlled by the activity of the flippase enzyme (a translocase), which is inhibited when the Ca2+ 

concentration increases69. The excess of Ca2+ also impacts a broad range of other processes70: 1) it 

triggers the Gardos effect, which corresponds to an efflux of K+ induced by the opening of the Ca2+-

dependent K+ Gardos channels, and results in extracellular K+ accumulation and cell dehydration; 2) 

Ca2+ activates proteins kinases, such as the Protein Kinase C and A (PKC, PKA) and AMP-activated 

Kinases (AMPK), leading to changes in phosphorylation levels; and 3) Ca2+ promotes proteolytic 

enzymes such as the µ-calpain proteases, which were shown to degrade the ankyrin, band 3, protein 

4.1, adducin and dematin; all part of the cytoskeleton-membrane junction protein complexes71. 
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Interestingly, calpain-1 knockout mouse RBCs did not exhibited Ca2+-induced sphero-echinocytic 

transition72. 

 Long-term stored RBCs exhibit changes in cell morphology and increased cell rigidity73–76. 

Blasi et al. showed that 50.2 % of the RBCs exhibit reversible (echinocytes and stomatocytes) and 

irreversible (sphero-echinocytes, sphero-stomatocytes and spherocytes) morphological changes after 

21 days of storage, and that the proportion of non-discocytes RBCs reached 77.1 % at day 4277. More 

recently, Roussel et al. demonstrated that in addition to morphological changes, stored RBCs exhibit 

a decrease in projected surface area after 28 days of storage, which makes them prone to splenic 

retention78. The RBC shape and deformability can be influenced by 1) the release of vesicles that 

reduces the membrane surface-to-volume ratio, 2) the osmolarity and ion homeostasis, and 3) the 

interactions between the membrane and cytoskeleton79,80. Deformability is an essential characteristic 

for the RBCs, as they need to pass through small capillaries to efficiently deliver O2 to peripheral 

organs/tissues79,81–83. Hence, RBCs that are poorly deformable (i.e. lost more than 18 % of surface 

area84 and/or express senescent markers, such as modified band 3 conformation, increased 

externalized PS or reduced CD47 levels) are retained by macrophages in the recipient 

Reticuloendothelial System (RES)85. Ultimately, extensively damaged RBCs can lyse in the blood bag, 

releasing their cytosolic content. 

New routes and additive solution formulations to improve the storage quality of red 

blood cells 

Different cost-effective approaches are currently studied to deal with storage-associated damages: 

First, rejuvenation consists in incubating the RBCs during 1 hour at 37°C in a solution 

composed of sodium pyruvate, inosine, adenine, mono- and dibasic sodium phosphate (i.e. 

rejuvesolÔ from CitraLabs, the only FDA approved rejuvenation solution). It reactivates the RBC 

metabolism and restores the 2,3-DPG and ATP levels post-storage. However, this does not repair 

irreversible lesions, which increase with storage duration86–89. 

 Second, the reduction in the O2 in blood bags: it has been shown that reducing the O2 

saturation level below 20 % generally helps maintain ATP and 2,3-DPG levels, reducing the 

percentage of hemolysis90 and the deterioration of mechanical properties91. Moreover, oxygenation 

reduction enhances the uniformity between RCC units90. Total depletion of O2 is not desirable, as it 

impairs the O2-dependent metabolic shift towards PPP which generates the electron carrier NADPH 

necessary for the replenishment/recycling of GSH. 

The third solution is the modification of storage solutions92. Indeed, SAGM (mostly used in 

Europe) and AS-1 (Adsol from Baxter, mostly used in the USA) were introduced in the 1970s and are 

still used today. Since then, slightly different formulations have been proposed and licensed, such as 
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the PAGGSM (from MacoPharma), AS-3 (Nutricel from Pall Medical) and AS-5 (Optisol from Terumo). 

Subsequently, solutions based on the concept of “chloride shift” were also developed. The idea was 

to replace extracellular chloride anion by citrate or gluconate anions, which cannot enter the cell, to 

have an alkaline solution instead of acidic one. As a result, the internal chloride that leaks because of 

the Donnan membrane equilibrium is replaced by hydroxyl ions, resulting in an increased 

intracellular pH and therefore in a better maintenance of ATP and 2,3-DPG levels. Based on this 

concept, the AS-7 (commercialized under the name SOLXÒ by Haemonetics Corporation) was 

developed by Hess and Greenwalt93, the E-sol 5 by Högmann et al.94, the PAGGGM by Korte et al95. 

Finally, one could imagine shortening the RCC shelf life. A threshold set at 28 days, for example, 

would reduce the risks associated with storage time. This approach would require to rethink the 

stocks management, which may be feasible judging by the case of the PCs96. 
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OBJECTIVES OF THIS PHD THESIS 

The main objective of this research conducted at the “Laboratoire de Recherche sur les Produits 

Sanguins (LRPS)” from TIR was to find new ways to improve the storage of RBCs by simple and cost-

effective means, to offer a product of higher quality to transfused patients. Specifically, the focus 

was on the addition of molecules that a) could limit the metabolic shift associated with the RCC 

preparation procedure, and b) could have antioxidant properties, to better protect RBCs against 

oxidative-related storage lesions. To achieve these goals, a better characterization of storage lesions 

in RCCs was required. 

The first chapter of this thesis is devoted to the characterization and quantification of storage 

lesions (metabolic, oxidative and morphological). With this aim, routine and newly developed 

methods were used to pinpoint the hallmarks of RBC storage lesions in blood bags. RBC 

microvesiculation and the percentage of hemolysis and hematological parameters were evaluated. 

Oxidative stress was determined by measuring the total Antioxidant Power (AOP) and the ratio of 

intracellular reduced/oxidized glutathione. Extracellular glucose and lactate concentrations, which 

reflect RBC metabolic activity, were quantified. Morphological changes, as well as membrane 

fluctuations, were recorded using a label-free Digital Holographic Microscope (DHM)97,98. The impact 

of storage on membrane protein Tyrosine-phosphorylation (pY) during aging was also investigated99. 

In the second chapter, the focus moves to the evolution of AOP in RCCs from donation to 

transfusion100. Indeed, the lesions from which the RBCs suffers during cold storage depend in part on 

their ability to counterbalance oxidative stress by activating their antioxidant defenses. An improved 

understanding of AOP evolution and the identification of underlying causes was therefore necessary 

to implement corrective strategies. 

The third chapter addresses the modification of the additive solution formulation per se 

based on Chapter 2 and the literature. A first strategy simply consisted to add Uric Acid (UA, whose 

level was shown to be closely correlated to the AOP), or UA plus Ascorbic Acid (AA) at physiological 

levels to prevent a potential metabolic shift, as well as a drop of AOP subsequent to the RCC 

preparation. Indeed, the replacement of plasma by an additive solution drastically reduces the 

concentration of endogenous antioxidant molecules. A second approach was to add exogenous 

molecules in order to increase the basal load of antioxidant protection, either by replenishing the 

endogenous antioxidant pool (e.g. the N-Acetylcysteine [NAC] that promotes de novo synthesis of 

GSH101), or taking advantage of their direct antioxidant effect. Molecules with known effects against 

oxidative stress in SCD were tested102. 

Finally, the fourth chapter presents preliminary data obtained during the development of the 

TSOX, namely, “Test of Sensitivity to OXidation”. This assay aims at evaluating the susceptibility of 
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RBCs to oxidative stress, and will thus be useful to monitor their antioxidant defense system (e.g. 

during storage or in other conditions). In particular, it could provide a tool for high-throughput 

screening and evaluation (EC50, cytotoxicity, mechanism of action, etc.) of potential protective 

molecules against oxidative stress. 

Based on the characterization of RBCs at the cellular and molecular level, and on 

investigations of chemical additives, this thesis brings new knowledge about RBC aging within RCCs, 

offering potential opportunities to rethink RBC storage. 
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CHAPTER 1 

 

CHANGES IN THE RED BLOOD CELLS DURING STORAGE 



 CHAPTER 1  26 

GENERAL INTRODUCTION 

The ex vivo journey of a Red Blood Cell (RBC) for transfusion (Figure 1) starts after donation of whole 

blood or after an apheresis procedure (automated cell separation). 

 

 

Figure 1 – The ex vivo journey of a Red Blood Cell (RBC) for transfusion. The Red Cell Concentrate (RCC) characteristics are 
dependent on the donor’s characteristics and the manufacturing processes. During storage, the RBCs progressively 
accumulate storage lesions that can impair cell recovery when a transfusion is carried out, with possible deleterious side 
effects for the patient. 2,3-DPG: 2,3-Diphosphoglycerate, ATP: Adenosine Triphosphate, GSH: reduced Glutathione, Hb: 
Hemoglobin, MVs: Microvesicles, NAD(P)H: reduced Nicotinamide Aadenine Dinucleotide (phosphate), PS: Phosphatidylserine, 
ROS: Reactive Oxygen Species. 

 

Whole blood is collected in an anticoagulant solution, i.e. Citrate-Phosphate-Dextrose (CPD) or Acid-

Citrate-Dextrose (ACD). Then, to obtain a Red Cell Concentrate (RCC), the blood components are 

separated by centrifugation and distributed into different storage bags. The RBCs are generally 

filtrated to minimize the number of residual leukocytes and platelets. This procedure reduces: 1) the 

risk of non-hemolytic transfusion reactions (allergic, anaphylactic and febrile, as well as Transfusion-

Related Acute Lung Injury [TRALI]), 2) the probability of Graft-Versus-Host Disease ([GVHD], to note 

that irradiation is required for immunocompromised patients) and 3) the transmission of blood-borne 

pathogens (such as Cytomegalovirus [CMV] and probably also the Hepatitis E Virus [HEV]) following 

transfusion. Moreover, it was shown that filtration reduces early senescence of RBCs during storage1,2. 

The RBCs are then re-suspended at a Hematocrit (HCT) comprised between 50 and 70 % in an additive 

solution, and stored in a gas-permeable plastic bag, at 4°C, without agitation until transfusion. 

Different types of additive solution are licensed and used worldwide (Table 1). 
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Table 1 – Licensed additive solutions for red blood cell storage. Composition, pH, associated anti-coagulant, and countries 
used. Table modified from Sparrow L. R.3. 

Constituents / mM SAGM AS-1  
(Adsol) 

AS-3 
(Nutricel) 

AS-5 
(Optisol) 

MAP PAGGSM 

NaCl 150 154 70 150 85 72 

NaHCO3 - - - - - - 

Na2HPO4 - - - - - 16 

NaH2PO4 - - 23 - 6 8 

Citric acid - - 2 - 1 - 

Sodium citrate - - 23 - 5 - 

Adenine 1.25 2 2 2.2 1.5 1.4 

Guanosine - - - - - 1.4 

Dextrose 45 111 55 45 40 47 

Mannitol 30 41 - 45.5 80 55 

pH 5.7 5.5 5.8 5.5 5.7 5.7 

Anti-coagulant CPD CPD CP2D CPD ACD CPD 

Countries used Europe 

UK 

Australia 

Canada 

New Zealand 

USA USA 

Canada 

USA Japan Germany 

Switzerland 

SAGM: saline-adenine-glucose-mannitol, AS: Additive Solution, PAGGSM: Phosphate-Adenine-Glucose-Guanosine-Saline-

Mannitol, CPD: Citrate-Phosphate-Dextrose, CP2D: Citrate-Phosphate-double Dextrose, ACD: Acid-Citrate-Dextrose, UK: 

United Kingdom, USA: United States of America. 

 

In Switzerland, the RCCs are generally stored at 4°C for 42 days in Saline-Adenine-Glucose-Mannitol 

(SAGM) and 49 days in Phosphate-Adenine-Glucose-Guanosine-Saline-Mannitol (PAGGSM) additive 

solutions. During storage, important changes appear at the level of the RBC metabolism, followed by 

the occurrence of oxidative stress (imbalance in the redox homeostasis), which ultimately results in 

the alteration of the cell rheological properties4,5. The progressive deterioration in the RCC quality 

during storage is multi-factorial: i.e. the normal aging of the cells (RBCs have a lifespan of 120 days in 

the circulation), the stress induced by the preparation procedure (mechanical stress, exposition to 

plastic materials, to light, etc.) and finally the storage conditions themselves, that are not physiological. 

This chapter will be focused on the identification of aging markers and on the improvement of 

the understanding of the storage lesions, using standard as well as innovative analysis tools. It is a 

necessary step before implementing correcting strategies to improve the quality of the blood products 

for transfusion. Therefore, we first characterized and quantified storage lesions by looking at multiple 

aging markers simultaneously. This study is presented in the first part of this chapter and is the subject 

of a paper published in the journal Blood Transfusion6. Then, the impact of the protein 

phosphorylation, which is hypothesized to regulate the RBC membrane shape and deformability, was 

studied. 
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PART 1: OVERWIEW OF THE RED BLOOD CELL STORAGE LESIONS 

Introduction 

During storage, the RBCs accumulate a broad range of lesions, that are either reversible or irreversible 

following transfusion4,5,7. The aim of this study is to better characterize and quantify storage lesions by 

analyzing various aging hallmarks that altogether provide an overview of the evolution of the cell 

metabolism, antioxidant defenses, morphology and membrane dynamics during storage. 

Study design 

In this study, different aging markers were quantified simultaneously on five RCCs prepared in SAGM 

and stored under conventional conditions in Switzerland (Figure 2). 

 

      

Figure 2 – Experimental workflow: follow-up of the Red Cell Concentrates (RCCs). The RCCs were followed during 71 days of 
storage at 4°C. The hematological parameters, extracellular glucose and lactate concentrations, pH, global antioxidant power, 
intracellular reduced and oxidized glutathione levels, microvesiculation, hemolysis, morphology and cell membrane 
fluctuations were analyzed at given timepoints. 

 

Metabolic parameters such as glucose consumption and extracellular lactate accumulation were 

quantified. The Antioxidant Power (AOP) was determined via the electrochemical pseudo-titration of 

water-soluble antioxidants, as well as the measurement of the intracellular reduced and oxidized 

Glutathione (GSH and GSSG) levels. The percentage of hemolysis and degree of microvesiculation were 

also assessed. Since morphological damages are related to biochemical lesions, Digital Holographic 

Microscopy (DHM) was used to follow the changes of RBC morphology and the levels of dynamic cell 

membrane fluctuations, a parameter reflecting the cell health state. To capture deep storage lesions, 

the follow-up period was prolonged to 71 days (29 days after the expiration date). 

Material and methods 

Five milliliters of each sample were collected using a sampling site weekly for 71 days (twice during 

week 1, 2 and 4). The five RCCs used in this study came from two women and three men (donors’ 

characteristics are listed in Table 2). 
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Table 2 – Donor’s characteristics. Sex, age and blood group (ABO and Rhesus D) of the donor. 

Sample Sex Age / year Blood group 
RCC 1  Female 58 O+ 

RCC 2 Female 43 O- 

RCC 3 Male 50 A+ 

RCC 4 Male 49 O+ 

RCC 5 Male 33 O+ 

      RCC: Red Cell Concentrate. 
 

Hematological, AOP and Microvesicles (MVs) analyses were done directly on RCC samples without 

processing. Hemolysis, glucose and lactate were quantified in the RCC supernatant collected after 

centrifugation of the RCC samples at 2000 g during 10 min at 4°C. The observations of morphology and 

membrane fluctuations were done on washed RBCs. 

Preparation of the red cell concentrates 

The RCCs were prepared using a top/bottom processing method. Whole blood (450 ± 50 mL) donated 

under signed consent was collected in 63 mL of CPD anticoagulant (CompoFlow CQ32250, Fresenius 

Kabi). After a holding time (minimum 1h and maximum 24h) at Room Temperature (RT, 22 ± 2°C), the 

bags were centrifuged (5’047 g for 13 min at 22°C on a Roto Silenta 630 RS, Hettich) to separate the 

blood components, and a semi-automated pressure was applied (CompoMat, Fresenius Kabi) to 

distribute the fractions into sterile inter-connected bags. Finally, the RBCs were filtered to remove 

residual leukocytes and were stored at 4°C in 100 mL of SAGM additive solution. To fulfill the quality 

control criteria, the RCCs must have a final volume of 275 ± 75 mL and an HCT of 0.6 ± 0.1 v/v. 

Hematological analysis 

The hematological data such as the RBC count, HCT, total and intracellular Hemoglobin (Hb) content, 

Mean Corpuscular Volume (MCV), Standard Deviation of the RBC Distribution Width (SD-RDW), etc., 

were recorded with an automated hematology analyzer (KX-21N, Sysmex). This instrument uses a 

Direct Current (DC) method, based on the impedance (electrical resistance) of the cell against a 

current, for cell count (number of pulses) and volume determination (pulse height); and the 

photometric non-cyanide Hb method for Hb quantification. 

Electrochemical antioxidant power measurement 

The EdelMeter potentiostat was used to measure electrochemically the AOP in RCCs (or supernatants) 

samples. For further details, please refer to the Chapter 28,9. Few microliters (approx. 3 µL) of sample 

were loaded in the electrochemical cell of the disposable screen-printed electrode strip. For each 

measurement, a fresh electrode strip is used. The AOP is recorded three seconds after loading the 

sample. Each measurement was performed at least in duplicate and was generally repeated when the 

difference between two measurements exceeded 7 EDEL. 
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Microvesicles quantification 

The MVs were quantified by flow cytometry (FACScalibur flow cytometer with CellQuest pro software, 

BD Biosciences)10. Five microliters of RCC (or supernatant) were mixed with 5 µL of Fluorescein (FITC) 

anti-human CD47 antibody and incubated 20 min at RT under agitation. Before analysis, TrucountTM 

tubes (BD Biosciences), that contain a known number of fluorescent beads enabling quantitation, were 

filled with 400 µL of 0.9 % NaCl and 5 µL of labelled sample. The different populations in the sample 

were discriminated according to their size (Forward Scatter, FSC), granularity (Side Scatter, SSC) and 

fluorescence. Small (< 1 µm) and CD47-positive events were considered as MVs. 

Hemolysis quantitation 

The concentration of Hb in the supernatant was determined according to the Harboe method with the 

3-point “Allen correction” (Equation 1)11. The absorbance at 380, 415 and 450 nm was measured with 

a spectrophotometer (NanoDrop 2000c, Thermo Scientific). This instrument measures the absorbance 

on microvolumes sample sizes (0.5 to 2 µL) over a 1 mm light path. 

 

!"	$%&'()*+*)+	(-//) =
234.6×89:;<=>.3×(8?@AB89;A)

2CC
× DE/%+EF)	G*H+F( Equation 1 

 

When hemolysis was too high (i.e. A415 above 1.5 A.U.), the samples were diluted in deionized water 

(dH2O). dH2O also used for the blank. The Hb supernatant value was then used to calculate the 

percentage of hemolysis using Equation 2. 

 

!'IF/J$E$	(%) = 	
LM	NOPQRSTUTSU	(V/W)	×	(2	<LXY)

LM	UZUTW	(V/W)
	× 	100   Equation 2 

 

To be noted that the HCT and total Hb where determined during the hematological analysis. 

Measurement of extracellular glucose and lactate concentrations 

Extracellular concentrations of glucose and lactate were measured in supernatant samples (stored at 

-80°C) using commercial colorimetric assays. The glucose was quantified using a Biochain assay (kit 

Z5030025, BioChain) and the lactate with a BioVision assay (kit II, K627-100, BioVision). 

Determination of intracellular reduced and oxidized glutathione levels 

Quantification of the intracellular levels of GSH and GSSG, was performed according to the protocol 

proposed by Giustarini et al.12 with small modifications. Two RCC samples were collected for the 

analysis. The first one was used per se for total glutathione quantification and the second one was 

treated with the derivatizing agent N-Ethylmaleimide (NEM) for GSSG measurement. NEM is added to 

prevent oxidation of GSH into GSSG during the acid deproteinization step, avoiding GSSG 

overestimation. This assay is based on GSH reaction with Ellman’s reagent (5,5'-Dithio-bis-[2-
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nitrobenzoic acid], DTNB) that produces the chromophore 5-Thio-2-nitrobenzoic acid (TNB) 

quantifiable by spectrophotometry at 412 nm. GSSG is recycled into GSH in the presence of the enzyme 

Glutathione Reductase (GR) and the redox cofactor Nicotinamide Adenine Dinucleotide Phosphate 

(NADPH). 

Two mL of each RCC were collected for the analysis, from which 750 µL were transferred into 

an empty tube for total glutathione quantification and 750 µL into a second tube containing 225 µL of 

NEM (NEM 300 mM, Sigma-Aldrich) for GSSG measurement. Samples were centrifuged at 10’000 g 

during 38 s at 4°C and supernatant was discarded. RBCs were then washed twice in two volumes of 1x 

phosphate buffered saline (PBS, Laboratorium Dr. G. Bichsel). RBC pellet was resuspended in one 

volume of 1x PBS, and a hematological measurement was done to determine intracellular Hb 

concentration of each sample for normalization. Two aliquots of 400 µL were transferred into new 

tubes, centrifuged as before and supernatant was discarded. The samples were stored as dry pellets 

of RBCs at -80°C until analysis. The rest of the analysis followed the procedure described in the 

protocol. 

Morphology and membrane fluctuation analyses using digital holographic microscopy 

DHM is a Quantitative Phase Microscopy (QPM) interferometric technique which has many advantages 

over the classical microscopy methods. Firstly, because it is label-free and uses a low intensity laser as 

light source for specimen illumination. Here, the 684 nm laser source that was used delivered roughly 

200 µW/cm2 at the specimen plane - that is some six orders of magnitude less than intensities typically 

associated with confocal fluorescence microscopy. With that amount of light, the exposure time is only 

0.4 ms. DHM is therefore less invasive, time consuming and costly. Secondly, because it not only 

provides a visual information (image) but also delivers a quantitative measurement of the Optical Path 

Length (OPL), a parameter related to the volume and cell refractive index. Thirdly, because it enables 

the refocusing of the images post-acquisition and is therefore compatible with 3-D samples. 
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The principle of the QPM is based on the fact that even if an object is transparent, and therefore 

(almost) invisible when looked with intensity contrast, it will induce a retardation of the phase of the 

transmitted wave (Figure 3). 

 

 

Figure 3 – Intensity versus phase contrast for imaging of transparent objects. Different pollen particles imaged with 
transmission DHMÔ T1000 and profiles extracted from phase images. d: distance or cell thickness, nc: refractive index of the 
cell. Images modified from the website of Lyncée Tec SA and from the slides of a presentation made by Dr. Benjamin Rappaz. 

 

The DHM records the phase images in a two-step process where a hologram consisting of a 2-D 

interference pattern is first recorded on a digital camera (Figure 4). Then, the quantitative OPL images 

are reconstructed numerically off-line using a specific algorithm. The numerical reconstruction consists 

in the simulation of re-illumination with the reference wave plus a correction for aberration, as 

classical interferometric phase shift measurements are sensitive to experimental noise. 

 

 

Figure 4 – Workflow for phase image acquisition using Digital Holographic Microscopy (DHM). The DHM is composed of a 
laser, as set of lenses, mirrors (M), a beam splitter (BS), microscope objectives (MO), a condenser and a Charge-Coupled Device 
(CCD) camera. The beam is split into a reference wave (R) and an object wave (O) that passes through the sample (S). As the 
phase cannot be directly recorded, it is encoded by interferometry. The interference pattern, i.e. the hologram is then 
numerically reconstructed post-acquisition into a phase image. Images modified from Depeursinge et al.13, Rappaz et al.14, 
and Bob Mellish from Creative Commons. 
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Conclusion
The DHM™ T1000 is an ideal instrument allowing non-invasive analysis of biological specimen 
structure and dynamics providing, thanks to the quantitative phase measurements, accurate 
information concerning both the 3D morphology and the protein concentration related refractive 
index.
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Quantitative phase contrast
Images of the same living neurons in culture 
obtained with a DHM™ T1000, phase contrast 
(PhC), and Nomarski’s differential interferometric 
contrast (DIC) microscopy are compared in Fig.1. 
The dark PhC image (a) makes the neuronal 
processes particularly visible, but suffers from 
well-known optical artifacts, namely, the 
halo (bright zone surrounding the neuronal 
body and processes in the background) and 
shading off (phase increase in the central 
part of the neuronal body, making it appear 
brighter than the thin neuronal processes). The 
predominant feature of DIC images (b) is their 
three-dimensional appearance as a result of 
virtual lateral illumination, or the shadow-cast 
effect. The contrast of DIC images is, therefore, 
not symmetrical and varies proportionally to 
the cosine of the angle made by the azimuth 
of the object and the direction of wave-front 
shear. Finally, DHM™ T1000 allows quantitative 
phase contrast and 3D vizualisation of living 
neurons (c). Furthermore by using a patented 
decoupling method or assuming a constant and 
homogeneous cellular refractive index, one can 
measure, with subwavelength resolution, the 
thickness of the cell body during the neuronal 
processes.

Cell type sorting: pollen grains
Pollen particles samples, with size ranging 
between 20µm and 30µm, were examined. 
Figure 2 presents typical examples of amplitude 
(first row) and phase (second row) images for 

three different pollen types: birch, yew and 
dandelion. The complementarity of the two 
kinds of image, phase and amplitude, is clearly 
visible on this figure: the amplitude images 
are related to the absorption of light by the 
sample, whereas the phase images are directly 
proportional to the optical path length of the 
sample, i.e. sensitive to both refractive index and 
thickness changes in the sample. In  the last row 
of Fig. 2, typical profiles of the different pollen 
particles types are shown. It shows clearly the 
uniqueness of the phase signal for each pollen 
type, as the refractive index can be different for 
each cell part (membrane, core, cytoplasm) as 
well as for each pollen type.

The negative phase difference visible on the 
birch pollen profile (the depletion on each side 

of the cell) can be explained by a refractive index 
in the membrane smaller than the extra-cellular 
environment (a liquid with a refractive index 
about 1.3). In contrast, on the yew pollen profile, 
small spikes on both sides of the cell are due to 
a refractive index in the membrane greater than 
both cytoplasm and extra-cellular environment 
refractive indexes. On the dandelion pollen 
profile, neither depletion nor spikes are visible, 
this signifies that the refractive indexes in the 
membrane and in the cytoplasm are about 
the same value, greater than the extra-cellular 
environment. Their shapes, different due to 
specific cells architectures, and their ranges, 
from 200° and 250° for respectively the birch 
and the yew cells to 600° for the dandelion cell, 
can be used to achieve cell type sorting.

Figure 1: Images of a living mouse cortical neuron 
in culture: a) dark PhC image; b) DIC image; c) 
perspective image in false colors of the phase 
distribution obtained with the DHM™ T1000.
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Figure 2: Different pollen particles imaged with transmission DHM™ T1000 and profiles extracted from phase 
images.
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Conclusion
The DHM™ T1000 is an ideal instrument allowing non-invasive analysis of biological specimen 
structure and dynamics providing, thanks to the quantitative phase measurements, accurate 
information concerning both the 3D morphology and the protein concentration related refractive 
index.
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Quantitative phase contrast
Images of the same living neurons in culture 
obtained with a DHM™ T1000, phase contrast 
(PhC), and Nomarski’s differential interferometric 
contrast (DIC) microscopy are compared in Fig.1. 
The dark PhC image (a) makes the neuronal 
processes particularly visible, but suffers from 
well-known optical artifacts, namely, the 
halo (bright zone surrounding the neuronal 
body and processes in the background) and 
shading off (phase increase in the central 
part of the neuronal body, making it appear 
brighter than the thin neuronal processes). The 
predominant feature of DIC images (b) is their 
three-dimensional appearance as a result of 
virtual lateral illumination, or the shadow-cast 
effect. The contrast of DIC images is, therefore, 
not symmetrical and varies proportionally to 
the cosine of the angle made by the azimuth 
of the object and the direction of wave-front 
shear. Finally, DHM™ T1000 allows quantitative 
phase contrast and 3D vizualisation of living 
neurons (c). Furthermore by using a patented 
decoupling method or assuming a constant and 
homogeneous cellular refractive index, one can 
measure, with subwavelength resolution, the 
thickness of the cell body during the neuronal 
processes.

Cell type sorting: pollen grains
Pollen particles samples, with size ranging 
between 20µm and 30µm, were examined. 
Figure 2 presents typical examples of amplitude 
(first row) and phase (second row) images for 

three different pollen types: birch, yew and 
dandelion. The complementarity of the two 
kinds of image, phase and amplitude, is clearly 
visible on this figure: the amplitude images 
are related to the absorption of light by the 
sample, whereas the phase images are directly 
proportional to the optical path length of the 
sample, i.e. sensitive to both refractive index and 
thickness changes in the sample. In  the last row 
of Fig. 2, typical profiles of the different pollen 
particles types are shown. It shows clearly the 
uniqueness of the phase signal for each pollen 
type, as the refractive index can be different for 
each cell part (membrane, core, cytoplasm) as 
well as for each pollen type.

The negative phase difference visible on the 
birch pollen profile (the depletion on each side 

of the cell) can be explained by a refractive index 
in the membrane smaller than the extra-cellular 
environment (a liquid with a refractive index 
about 1.3). In contrast, on the yew pollen profile, 
small spikes on both sides of the cell are due to 
a refractive index in the membrane greater than 
both cytoplasm and extra-cellular environment 
refractive indexes. On the dandelion pollen 
profile, neither depletion nor spikes are visible, 
this signifies that the refractive indexes in the 
membrane and in the cytoplasm are about 
the same value, greater than the extra-cellular 
environment. Their shapes, different due to 
specific cells architectures, and their ranges, 
from 200° and 250° for respectively the birch 
and the yew cells to 600° for the dandelion cell, 
can be used to achieve cell type sorting.

Figure 1: Images of a living mouse cortical neuron 
in culture: a) dark PhC image; b) DIC image; c) 
perspective image in false colors of the phase 
distribution obtained with the DHM™ T1000.
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Figure 2: Different pollen particles imaged with transmission DHM™ T1000 and profiles extracted from phase 
images.
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The phase information in DHM is quantitatively related to the Optical Path Difference (OPD), expressed 

in terms of cell biophysical parameters as described in Equation 3. 

 

]^_(`,b) = D(`,b) × ()cQWW(`,b) − )e)   Equation 3 

 

where D(`,b) is the cell thickness, )cQWW(`,b) is the mean z-integrated intracellular refractive index at the 

(f, J) position and )e is the refractive index of the surrounding culture medium15. As far as RBCs are 

concerned, the value of the intracellular refractive index results primarily from Hb concentration, and 

the cell thickness to the RBC morphology13,14,16–18. 

 

 

Figure 5 – Population analysis with the Optical Path Difference (OPD) parameter. A cell mask is applied to the raw OPD 
image and all the pixel OPD values within the mask are plotted as a histogram. SD: Standard Deviation. 

 

For quantitative analysis, the raw OPD images are thresholded with a fixed value (slightly above 

background level to discard noisy pixels) to create the “cell mask”. All the pixel OPD values that are 

within the cell mask are plotted in a histogram (Figure 5). The reconstruction software automatically 

provides multiple analysis parameters such as the average OPD (avg OPD), Standard Deviation of OPD 

(SD-OPD), kurtosis, skewness, sum of OPD and confluency values for each image (rapid “on-the-fly” 

analysis). 

The general workflow for RBC analysis using DHM is presented in Figure 6. Before analysis, the 

RBCs were washed twice with 0.9 % NaCl and spun-down at 2000 g during 10 min at 4°C. Two volumes 

of HEPA buffer (composition described in ANNEX-1) were added on the RBC pellets and a Sysmex 

analysis was done to determine the RBC count. Just before the analysis, the RBCs were further diluted 

in HEPA and seeded in the wells at a density of 75’000 cells for 100 µL per well (3 wells/ RCC) in a 96-

well imaging plate (BD Falcon) coated with 0.1 mg/mL poly-L-ornithine (details of the coating 

procedure can be found in ANNEX-2). The plate was centrifuged at 140 g, 2 min at RT to speed up the 

sedimentation process. During image acquisition, the plate was placed in a plate incubator set at 37°C 

with high humidity and 5 % CO2. 



 CHAPTER 1  34 

 

 

Figure 6 – Workflow of Red Blood Cell (RBC) image acquisition using digital holographic microscopy (DHM) and image 
analysis. [A] Washed RBCs are plated into a multiwell imaging plate coated with poly-L-ornithine. [B] Holograms of the seeded 
RBCs are acquired at 20x or 40x magnification. For timelapse analyses, the plate can be placed into an incubation chamber 
set at 37°C and 5 % CO2. The phase images are then reconstructed, and a threshold is applied to keep only the pixel Optical 
Path Difference (OPD) values from cells. [C] Population “on-the-fly” analysis of OPD parameters, or [D] single-cell analysis 
using CellProfiler and CellProfiler Analyst (CPA). [E] The Standard Deviation of OPD (SD-OPD) and the percentage of 
spherocytes in the sample are linearly correlated. 

 

The microscope used was a DHMÒ T1000 (Lyncée Tec SA) equipped with a motorized microscope stage 

(Märzhäuser Wetzlar GmbH & CO. KG), an incubator system (LCI Live Cell Instrument), and 20x/0.40 

NA and 40x/0.75 NA objectives (Leica Microsystems GmbH). Quantitative phase images (four images 

per well) of the RBCs were acquired at 20x magnification to analyze RBC morphology. 
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The quantitative phase images were analyzed in two ways. First, a population analysis (yielding a single 

output per image) was performed by automatic calculation of the OPD value during the reconstruction 

of the images. It has the advantage of being directly available without further analysis, enabling High-

Throughput Screening (HTS). Single-cell analysis was also performed using CellProfiler19,20 (Broad 

Institute, www.CellProfiler.org, 2.2.0, rev 9969f42) and CellProfiler Analyst21,22 ([CPA], 2.2.1). 

CellProfiler is a free open-source cell image analysis software that can be used to identify, segment 

and measure different parameters of the individual RBCs, such as their size, shape, intensity, and 

texture. CPA then uses these features during the supervised machine learning to classify RBCs 

according to their phenotype. Generally, four classes were defined, i.e. “stomatocytes”, “discocytes”, 

“echinocytes” and “spherocytes”. An additional “errors” class was added to eliminate objects resulting 

from segmentation errors. Of interest was a strong correlation shown between the number of 

spherocytes present in the sample (based on CPA) and the SD-OPD (the results of the correlation 

analysis are presented in ANNEX-3). 

In addition, DHM was used for the quantification of the RBC membrane fluctuations. To that 

end, short movies (at 40x magnification, during 10 s, with a frame rate of 20 images per second) were 

acquired. This analysis was done in collaboration with Professor Inkyu Moon and Keyvan Jaferzadeh 

from the Chosung University in South Korea, who carried out the analyses. DHM phase images from 

each time-frame of the recorded movies were first registered using the StackReg ImageJ plugin (to 

cancel the spatial displacement of RBCs) and then, using ImageJ software, manually segmented into 

individual RBCs to measure membrane fluctuations at the single-RBC level. The amplitude of Cell 

Membrane Fluctuation (CMF) was measured on individual cells according to the method described by 

Rappaz et al.23. More details about this analysis are presented in ANNEX-4. 
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Results and discussion 

The mean values for the observed parameters at day 1, 29, 43 and 71 are summarized in Table 3. 

 

Table 3 – Main Red Blood Cell (RBC) aging parameters. Followed during storage at day 1, 29, 43 and 71. 

 Day 1 Day 29 Day 43 Day 71 

RBCs (1·1012/L) 6.47 ± 0.46 6.34 ± 0.51 6.34 ± 0.51 6.51 ± 0.48 

MCV (fL) 91.6 ± 6.0 97.8 ± 11.9 99.7 ± 12.2 100.8 ± 8.3 ** 

SD-RDW (fL) 48.2 ± 1.8 54.0 ± 7.7 55.6 ± 8.5 58.8 ± 13.3 

Glucose (mg/dL)  481.4 ± 33.0 254.0 ± 31.5 ** 211.1 ± 34.4 ** 174.1 ± 37.1 ** 

Lactate (mM) 6.57 ± 0.96 32.66 ± 3.42 ** 37.24 ± 3.64 ** 35.95 ± 3.87 ** 

MVs (1/µL) 3628 ± 1047 7980 ± 832 ++ * 15’860 ± 4219 ** 258’654 ± 106’413 * 

Hemolysis (%) 0.079 ± 0.017 0.233 ± 0.062 * 0.441 ± 0.135 ** 3.817 ± 1.391 ** 

AOP (nW) 71.4 ± 5.3 62.3 ± 9.2 ++ 61.4 ± 5.6 * 62.2 ± 6.5 

GSH (µmol/g Hb) 5.27 ± 0.42 + 5.46 ± 0.62 4.08 ± 0.33 * 2.21 ± 0.38 ** 

GSSG (nmol/g Hb)  28.2 ± 5.2 35.0 ± 4.9 * 27.3 ± 4.4 178.0 ± 118.7 

SD-OPD (nm)  49.6 ± 6 46.6 ± 2.2 * 55.5 ± 6 86.8 ± 8.9 ** 

Stomatocytes (%) 30.0 ± 14.4 18.0 ± 4.2 13.7 ± 3.7 6.7 ± 2.7 

Discocytes (%) 64.0 ± 13.6 69.7 ± 4.8 60.0 ± 7.0 20.8 ± 8.4 * 

Echinocytes (%) 5.8 ± 1.8 10.8 ± 7.0 15.7 ± 7.0 14.2 ± 5.7 

Spherocytes (%) 0.1 ± 0.1 1.5 ± 0.8 * 10.6 ± 5.9 * 58.3 ± 13.0 ** 

CMF discocytes (nm) 30.4 ± 3.5 + 29.5 ± 2.9 29.9 ± 3.1 29.0 ± 2.9 

CMF spherocytes (nm) 32.1 ± 4.1 + 27.5 ± 3.2 28.1 ± 3.4 27.9 ± 3.4 

Mean values for the five red cell concentrates ± Standard Deviation (SD). Measurements done at day 4+ instead of day 1, or 

day 31++ instead of day 29. * p-value < 0.05, ** p-value < 0.01 compared to day 1. 

MCV: Mean Corpuscular Volume, SD-RDW: Standard deviation of Distribution Width, MVs: Microvesicles, AOP: Antioxidant 

Power, GSH and GSSG: reduced and oxidized Glutathione, SD-OPD: Standard Deviation of the Optical Path Difference, CMF: 

Cell Membrane Fluctuation. 

 

The hematological data (Figure 7) evolved similarly for all RCCs at the exception of RCC5. The MCV, 

initially of 89.5 ± 4.3 fL, gained on average 5.1 fL at day 43 and 7.9 fL at day 71 (without considering 

RCC 5). The increasing MCV is the result of the progressive loss of cation gradient24. Sizes of RBCs in 

the population became more heterogeneous during storage, as indicated by an increasing SD-RDW, a 

parameter providing information about the anisocytosis. 

 

 

Figure 7 – Red Blood Cell (RBC) aging parameters. Part 1: hematological data. RBC count [left], Mean Corpuscular Volume 
(MCV) [middle] and Standard Deviation of Distribution Width (SD-RDW) [right], measured with Sysmex analyzer. RCC: Red Cell 
Concentrate. 
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The extracellular glucose was progressively consumed by the cells at a decreasing rate during storage 

(Figure 8, left). At day 52, a plateau value was reached and did not further decrease, which indicates 

that the activity of RBC energetic metabolism was almost completely stopped. During the 71 days of 

storage, RBCs consumed on average 64 % of the available glucose. On the other hand, lactate 

(glycolysis end-product) accumulated until day 36 (5.6-fold increase) and then stagnated (Figure 8, 

right). 

 

 

Figure 8 – Red Blood Cell (RBC) aging parameters. Part 2: metabolism. Glucose [left] and lactate concentrations [right], 
determined using commercial assays. RCC: Red Cell Concentrate. 

 

The global AOP in the 5 RCCs increased during the first week following blood collection, reaching a 

maximum at day 4. Then, it decreased gradually back to its initial value (at day 22) and remained stable 

until the end of the follow-up (Figure 9A). This behavior suggests that RBCs are impacted by blood 

processing. This response can be passive, RBCs equilibrating with their new environment, or active. 

This subject will be further discussed in Chapter 2. 

Similarly to the AOP, the intracellular concentration of GSH increased during the first two 

weeks of storage from day 4 up to day 15 (Figure 9B, left), before dropping off linearly until the end of 

the storage. In the 5 RCCs, the GSSG level (Figure 9B, right) remained low until day 43 and then 

increased drastically. These results correlate with the increased metabolic activity observed by ours 

and other groups between 7 and 14 days of storage, followed by its decrease due to a lactate 

associated drop of pH25,26. Indeed, as glycolysis is progressively inhibited by low temperature and pH, 

glucose is consumed via the Pentose Phosphate Pathway (PPP), producing NADPH. This metabolite is 

the cofactor of the GR responsible for the recycling of GSSG into GSH. GSH is a major thiol-based 

antioxidant in RBCs. However, the PPP does not produce enough NADPH to sustain recycling of 

glutathione all along the storage. Additionally, the de novo synthesis of GSH is dependent on 

Adenosine Triphosphate (ATP) and is therefore impaired when the stocks of intracellular ATP are 

depleted. 

0 20 40 60 80
0

200

400

600

Time / day

G
lu

co
se

 / 
m

g/
dL

0 20 40 60 80
0

10

20

30

40

50

Time / day

La
ct

at
e 

/ m
M

RCC 1
RCC 2
RCC 3
RCC 4
RCC 5
Mean



 CHAPTER 1  38 

 

Figure 9 – Red Blood Cell (RBC) aging parameters. Part 3: antioxidants. [A] Global Antioxidant Power (AOP) quantified by 
pseudotitration voltammetry with EdelMeter, and [B] intracellular concentration of reduced and oxidized Glutathione (GSH 
and GSSG, respectively). Mean value ± standard deviation. RCC: Red Cell Concentrate. 

 

The loss of metabolites and antioxidant defenses correlates with the appearance of irreversible lesions 

such as the microvesiculation and hemolysis. The number of MVs in the RCCs raised first linearly from 

day 1 to 36 (2.4-fold increase) and then exponentially between day 43 (4.4-fold increase) and 71 (71.3-

fold increase) (Figure 10, left). Similarly, the increase of mean hemolysis (0.079 ± 0.017 % at day 1) 

(Figure 10, right) was linear until day 36, and then followed an exponentially trend. The mean 

hemolysis percentage was 0.44 ± 0.14 % at day 43, and of 3.82 ± 1.39 % after 71 days of storage. 

Exponential release of MVs, as well as hemolysis, are reflecting of waste products accumulation inside 

the cell and appearance of irreversible lesions at the level of the cytoskeleton and membrane, leading 

together to the destabilization of the RBC membrane (to be mentioned that cell debris coming from 

hemolyzed RBCs could be wrongly detected as MVs by the flow cytometer). Again, it is interesting to 

notice that the measured values were quite different among the five RCCs. 

 

 

Figure 10 – Red Blood Cell (RBC) aging parameters. Part 4: cellular integrity. Microvesicles (MVs) in the RCC supernatant 
counted by flow cytometry [left], and percentage of hemolysis in the blood bag determined with the Harboe 
spectrophotometric method [right]. Mean value ± standard deviation. RCC: Red Cell Concentrate. 

 

The appearance of irreversible lesions at the level of the cytoskeleton and plasma lead to the 

destabilization of the RBC membrane and to changes of RBC morphology. All RCCs, at the exception of 

RCC 5, had a similar SD-OPD at the beginning of the storage. SD-OPD value remained stable until day 

29 (Figure 11A, left). The interestingly increasing SD-OPD value was strongly correlated with the 

transformation of discocytes into transient echinocytes and finally spherocytes (Figure 11B). At day 1, 
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RBCs were mostly discocytes (64.0 ± 13.6 %) or stomatocytes (30.0 ± 14.4 %) (Figure 11A, right). Until 

day 29, the stomatocytes transformed into discocytes. Together these two cell types represented 

approximately 95 % of the population. The percentage of discocytes started to drop linearly from day 

36. After 29 days, spherocytes that represented less than 1 % of the population at the beginning of 

storage started to appear in RCCs. From this point, the percentage of spherocytes also increased 

linearly in the sample to reach 10.6 ± 5.9 % at day 43 and 58.3 ± 13.0 % at day 71. Echinocytes are a 

transitional intermediate between discocytes and spherocytes, which is why their number did not 

increase. Morphological changes followed biochemical alterations, thus suggesting causative events. 

 

 

Figure 11 – Red Blood Cell (RBC) aging parameters. Part 5: morphology. Morphology analysis with Digital Holographic 
Microscope (DHM): [A] population analysis using the Standard Deviation of OPD (SD-OPD) parameter [left], and single-cell 
analysis with CellProfiler and CellProfiler Analyst (CPA) [right]. Mean value for each cell type ± Standard Deviation (SD). [B] 
Correlation between the spherocytes percentage and SD-OPD, each point represents a mean value at different storage time ± 
SD. RCC: Red Cell Concentrate. 

 

Morphological classes of RBCs can be distinguished on the basis of their CFM map (Figure 12A). The 

CMF values can be ranked in the following order (by decreasing order of CMF amplitude): stomatocyte, 

discocyte, echinocyte and spherocyte. Stomatocytes that have a loose central part show an important 

fluctuation in this region. Discocytes present a symmetric fluctuation in their center and their ring and 

exhibit the highest CMF, while echinocytes have a decreased center fluctuation. The spherocytes 

exhibit no more fluctuations in their central area and have the lower CMF values which corroborates 

their loss of flexibility27. 
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Figure 12 – Red Blood Cell (RBC) aging parameters. Part 5: membrane fluctuations. [A] Cell Membrane Fluctuation (CMF) 
maps for different classes of RBCs and [B] CMF changes for discocytes and spherocytes. Mean value ± standard deviation. 

 

A general analysis showed a decrease of the CMF during the storage. The discocytes lost 10 % of their 

CMF at the expiration date (Figure 12B, left), even though the shape was kept. It suggests that aging 

not only induces morphological changes from discocytes to spherocytes, but also alter the state of the 

RBCs that keep a normal shape. During the first three weeks of storage and following the main 

metabolism lesions, RBCs lost a part of their fluctuation capacity. Several mechanisms could participate 

into it, such as phosphorylation events that are dependent on energy metabolism28. Regarding 

spherocytes, after a decrease phase, a plateau was reached at day 18 (Figure 12B, right). However, no 

statistical differences were reported. 

Conclusions 

RBCs accumulate a broad range of lesions during storage under standard blood transfusion practice. 

Of particular interest is the sequence of events that lead the storage lesions with two cornerstones 

and three zones29, in close relation with the evolution of the cell metabolism29,25. 

Metabolic changes can directly impact the RBC rheological properties. Indeed, even when the 

RBCs keep an intact shape, their fluctuation amplitude changes, suggesting that aging not only induces 

morphological changes from discocytes to spherocytes, but also alter the state of apparently normal 

RBCs. Several mechanisms could participate to it, such as phosphorylation events that are dependent 

of energy metabolism30,28. Indeed, several groups demonstrated that the maintenance of the 

biconcave shape and membrane deformability was regulated by dynamic ATP-dependent remodeling 

of the membranes/cytoskeleton interactions30–34. The impact of phosphorylation on RBCs morphology 

will be discussed in the next part of this chapter. 
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PART 2: PHOSPHORYLATION OF RED BLOOD CELL MEMBRANE 

PROTEINS 

Introduction 

During aging, RBCs suffer from lesions4,5 that are characterized amongst other parameters by changes 

in cell morphology and increased cell rigidity35–38 (as reported in Part 1 of this chapter). Cell shape is 

the result of different features (of which membrane deformability) influenced by cell vesiculation, 

osmolarity and ion transport, and membrane proteins/lipids organization in active or passive 

events39,40. Protein phosphorylation processes are involved in several mechanisms41. It was 

hypothesized that they regulate RBC membrane deformability which is a key parameter in tissue 

oxygenation. 

The interactions membrane/cytoskeleton (whose rupture is observed in several diseases39) 

regulate the RBC shape change in an ATP-dependent manner31,42. Park et al. showed the participation 

of ATP in membrane fluctuations in addition to thermal effects30. They concluded that the non-

equilibrium dynamism was due to the dissociation of the cytoskeleton at the spectrin junctions 

powered by ATP. However, once dissociated from the cytoskeleton, membrane fluctuations are 

thermally governed43. Several groups evoked the hypothesis of protein phosphorylation in the 

regulation of membrane deformability30–34. 

In RBCs, protein phosphorylation, e.g. of band 3, is known to regulate enzymatic activity44–46. 

More recently, phosphorylation of cytoskeleton and membrane proteins have been reported to 

modulate protein-protein interactions and to potentially affect membrane mechanical properties47–51. 

These phosphorylations involve adducin, b-spectrin, protein 4.1 as well as band 3. A few proteomic 

studies focusing on sickle cell disease identified several phosphoproteins and phophosites52,53. They 

pointed out their roles in signaling and in RBC deformability (through the phosphorylation of junctional 

complex proteins54). 

Phosphorylation of band 3 has been studied since the 80s55,56. In 1991, Low and colleagues 

detected the presence of two kinases: p72syk (Syk) and p56/53lyn (Lyn) in RBCs, and demonstrated that 

Syk was responsible for band 3 phosphorylation under pervanadate treatment57. Later, Brunati et al. 

reported the sequential phosphorylation of band 3 by Syk on Tyr8 and Tyr21 and by Lyn on Tyr359 and 

Tyr904 (independent of Syk in the case of chorea-acanthocytosis58)59. The same group also discovered 

the role of SHP-2 tyrosine phosphatase in the dephosphorylation of band 3 and Syk-mediated 

phosphorylation60,61. Protein Tyrosine Phosphatase (PTP) 1B participates also to the 

dephosphorylation of band 362. Minetti et al. have shown that these two PTPs were differentially 

located. Under vesiculation, PTP1B remains on RBC membrane whereas SHP-2 tyrosine phosphatase 
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was present in MVs . Moreover, they pointed out that Syk was involved in cell volume-dependent 

response64. 

Protein phosphorylation could favor morphological changes in response to stress . Ferru et al. 

proposed a phosphorylation-induced oxidation mechanism where Syk binds to oxidized band 3, 

phosphorylates it and causes the weakening of the cytoskeleton and the formation of band 3 clusters 

that are released in MVs in thalassemia and Glucose-6-Phosphate Dehydrogenase (G6PD) 

deficiency65,66. On the opposite, Minetti et al. suggested that band 3 phosphorylation was not required 

in Ca2+/ionophore-induced MVs67. Under blood banking conditions, where oxidative processes play an 

important role68–70, MVs accumulate during storage10, and the link to phosphorylation is unknown. 

Several questions remain open regarding all these regulation mechanisms and phosphorylation of 

proteins during storage of RBCs. 

Study design 

The aim of this study was to investigate the role of Tyrosine-phosphorylation (pY) of RBC membrane 

proteins in the context of transfusion. To do so, RBCs taken in 6 RCCs stored in SAGM for 2, 22 and 42 

days were treated during 1 or 4 h at 37°C with 2 mM of Sodium Orthovanadate (OV). OV is an inhibitor 

of protein tyrosine phosphatases, which preparation described in ANNEX-5. Qualitative and 

quantitative analyses of the pY sites were conducted on the membrane proteins by Western Blot (WB) 

and phosphoproteomics. The impact of the treatment on the cell integrity was determined by 

measuring the microvesiculation and hemolysis (Figure 13). 

 

      

Figure 13 – Experimental workflow: sample preparation, treatment and analyses (experiment 1). Six Red Cell Concentrates 
(RCCs) were sampled at day 1, 22 and 42, and hematological parameters, microvesicles  and hemolysis were quantified. Then, 
the Red Blood Cells (RBCs) were treated with 2 mM Sodium Orthovanadate (OV) for 0, 1 or 4 h at 37°C and tyrosine 
phosphorylation (pY) of the membrane proteins was assessed by western blot and phosphoproteomics. The release of 
microvesicles and hemolysis triggered by the treatment were also quantified. 
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A second experiment was then conducted to analyze the impact of the pY events on RBC morphology 

(Figure 14). 

 

      

Figure 14 – Experimental workflow: sample preparation, treatment and analyses (experiment 2). Four Red Cell Concentrates 
(RCCs) were sampled at day 2, 22 and 42 or 49, and hematological parameters, were analyzed. Then, the Red Blood Cells 
(RBCs) were treated with 2 mM Sodium Orthovanadate (OV) at 37°C and the impact of the treatment on the cell morphology 
was analyzed by Digital Holographic Microscopy (DHM). 

 

In the second experiment, RBCs withdrawn from four RCCs stored in SAGM for 2, 22 and 42 or 49 days 

were plated in a multiwell imaging plate and treated with 2 mM OV (37°C). The evolution of the cell 

morphology was followed during several hours with DHM. 

Material and methods 

Experiment 1 

Treatment of the red blood cell with sodium orthovanadate and preparation of the membranes 

Fourteen milliliters of RBCs were collected from six RCCs (see Table 4) after 1 day, 22 days and 42 days 

of storage. 

 

Table 4 – Donor’s characteristics. Sex, age and blood group (ABO and Rhesus D) of the donor. 

Sample Sex Age / year Blood group 
RCC 1 Female 25 A+ 

RCC 2 Male 71 O+ 

RCC 3 Female 57 O+ 

RCC 4 Male 31 A+ 

RCC 5 Female 62 A+ 

RCC 6 Male 53 B+ 

    RCC: Red Cell Concentrate. 
 

A small amount (≈ 200 µL) of sample was put aside for Sysmex and MVs quantification (RCC sample), 

the rest was distributed into two tubes to optimize the wash and centrifuged at 2000 g during 10 min 

at 4°C. The supernatant was collected to measure the percentage of hemolysis in the blood bags. The 

RBCs were then washed (once at day 1 and twice at days 22 and 42) in 0.9 % NaCl (centrifugation as 
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before). The cell pellets were resuspended in two volumes of HEPAnoCalcium (composition described in 

ANNEX-1) and incubated 1h at RT under agitation. To have samples as homogeneous as possible, the 

two aliquots were pooled and split again (2x 12 mL), and 240 µL of either dH2O for control (Ctrl) or 100 

mM OV (final concentration of 2 mM OV) were added. Immediately, Sysmex and MVs analyses were 

performed. Treated RBCs were incubated at 37°C on a roller for 1 and 4 h. Again, a small aliquot was 

put aside for Sysmex and MVs quantification  and 5 mL of sample were centrifuged at 2000 g during 

10 min at 4°C. The supernatant was again collected to measure the percentage of hemolysis and the 

RBCs were washed twice in HEPAnoCalcium. Finally, the cells were lysed by incubation in hypotonic buffer 

(PBS 0.1x) during 1h at 4°C on a roller, in presence (OV) or absence (Ctrl) of 2 mM OV. To separate the 

membranes from the intracellular content, the cell lysates were centrifuged at 100’000 g, 30 min, 4°C. 

The membranes were then transferred into 1.5-mL tubes for more washing steps (centrifugation at 

21’500 g, 4°C, 30 min) until obtaining white membranes. Membrane aliquots were saved at -80°C until 

protein extraction for WB analysis or phosphoproteomics. 

Western blot analysis against phosphorylated tyrosine 

Membrane proteins were extracted from pelleted membranes with 4 volumes of DC buffer: 1 % 

deoxycholate in 50 mM Tris–HCl, 150 mM NaCl, pH 8.1. A final centrifugation was performed at 21’500 

g, 30 min, 4°C and the supernatant, containing membrane proteins and cytoskeleton, was saved at 

4°C69. Protein amounts were determined using the NanoDrop spectrophotometric method based on 

A280 absorbance. Ten µg of proteins from each sample and 10 µL of BenchMark Prestained Protein 

Ladder (InvitrogenÔ, ThermoFisher Scientific) were loaded on SDS-PAGE (Mini-PROTEAN TGX gels, 4-

15 %, BIO-RAD). WB were performed on a Polyvinylidene Fluoride (PVDF) membrane (transfer 1h at 

100 V in Tris-Glycine buffer inside a Mini Trans-Blot Electrophoretic Transfer cell) against pY-containing 

proteins. Membranes were blocked 1h at RT under agitation with Top Block buffer (Sigma-Aldrich, 4 % 

in TBS-T [1x TBS + 0.05 % Tween-20]). Then, the membranes were rinsed and washed 2x 5 min in TBS-

T. The blot was incubated overnight at 4°C under agitation with the primary anti-pY antibody (pY PY99 

1/6000 from Santa Cruz Biotechnology, in Top Block buffer). After a quick rinse and three washes of 5 

min at RT in TBS-T, the membranes were re-incubated in Top block buffer at least 30 min at RT under 

agitation and were incubated 1h at RT under agitation with the secondary antibody (polyclonal goat 

anti-mouse immunoglobulins HRP, Dako) diluted at 1/10’000 in Top Block buffer. The membranes 

were finally washed 1 x 15 min and 2 x 5 min with TBS-T. The ECL reaction was achieved using the ECL 

western blotting detection reagents (GE Healthcare) 1 min in the dark, the images were acquired by 

means of ImageQuant LAS 500 (GE Healthcare) and quantitation of protein phosphorylation content 

was achieved with the ImageQuant TL 7.0 software (GE Healthcare). WB membranes were finally 

stained with Ponceau red and scanned with a Personal Densitometer SI (GE healthcare). 
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Phosphoproteomics 

Protein extracts from short-term stored RCCs (RCC 1-6), OV-treated or not, were prepared in 4 volumes 

of extraction buffer (8 M Urea, 2 M Thiourea, 0.5 % SDS and 10 mM DTE). Each sample (300 μg) was 

buffered in with Tris-HCl, pH 8.5 at final concentration of 30 mM and 0.3 % RapiGest. Reduction was 

performed at 37°C for 1 h. Samples were buffered to pH 8.5 using Tris pH 10-11 and protein alkylation 

was performed with 40 mM iodoacetamide at 37°C in the dark for 45 min. Reaction was quenched 

using DTE to a final concentration of 10 mM. A two-step digestion was performed using first Lys-C (1:50 

enzyme/protein) for 2 h at 37°C. Samples were then diluted 5-fold with 50 mM ammonium bicarbonate 

and the second digestion was performed overnight using Trypsin gold (1:50 enzyme/protein) and 10 

mM CaCl2. Reaction was stopped and RapiGest cleaved by addition of pure Trifluoroacetic Acid (TFA) 

during a final 1 h incubation at 37°C. Samples were concentrated by vacuum centrifugation to a final 

volume of 0.6 mL and desalted using Sep-Pak SPE cartridges 1cc/100 mg following manufacturer's 

instructions. Samples were dried by vacuum centrifugation and stored at -20°C before further 

phosphopeptide enrichment. Phosphopeptide capture was performed on homemade titania tips as 

described previously71. For LC-MS/MS analysis, enriched phosphopeptides were resuspended in 2 % 

ACN, 0.1 % FA and separated by reversed phase chromatography on a Dionex Ultimate 3000 RSLC 

nanoUPLC system connected on-line with an Orbitrap Q-Exactive HF. 

Raw data were analyzed using MaxQuant 1.6.0.172 with Andromeda as internal database 

search engine73. Fragmentation spectra were searched against the human UniProt database (July 2017 

- 71’567 sequences). A threshold of 1 % False Discovery Rate (FDR) was fixed at peptide and protein 

levels. Mass spectra were searched with a mass tolerance of 6 ppm in MS mode and 0.5 Da in MS/MS 

mode. Up to two missed cleavages were allowed and carbamidomethylation was set as a fixed 

modification. Oxidation (M), acetylation (Protein N-term) and phosphorylation (Serine [S], Threonine 

[T], Tyrosine [Y]) were considered as variable modifications. A minimum peptide length of seven amino 

acids and at least one peptide for protein identification was required. A minimum of seven amino acids 

was required as peptide length and at least one peptide was required for protein identification. Class1 

phosphosites (i.e. localization probability > 0.75)74 quantified in at least twelve of the seventeen (Ctrl 

group) or eighteen (OV treated group) LC-MS/MS runs per biological condition were analyzed in 

Perseus, a tool from the MaxQuant suite. Missing values were imputed with random numbers from a 

normal distribution (width = 0.7, down-shift = 1.8)75. Normalized intensities were compared between 

OV-treated and not treated protein extracts, using a statistical Welsch t-test with a permutation-based 

FDR of 0.05 for multiple testing. A threshold based on both t-test values and the ratios (SO = 1) was 

used to discriminate differentially quantified phosphosites75,76. Graphical views were generated with 

homemade programs written in the R environment77. 



 CHAPTER 1  46 

Experiment 2 

Preparation of the red blood cells for analysis with digital holographic microscopy 

Samples (3.2 mL) were collected from four RCCs (see Table 5) at different lengths of storage, i.e. 2 days, 

22 days and 42 days for RCC 1 and 2, or 49 days for RCC 3 and 4. 

 

Table 5 – Donor’s characteristics. Sex, age and blood group (ABO and Rhesus D) of the donor. 

Sample Sex Age / year Blood group 
RCC 1 Male 37 A+ 

RCC 2 Male 52 O+ 

RCC 3 Male 57 O- 

RCC 4 Male 61 A+ 

   RCC: Red Cell Concentrate. 
 

Approximatively 200 µL of sample were kept for hematological analysis (Sysmex). The RBCs were 

washed twice in 0.9 % NaCl and spun down (centrifugation at 2000 g for 10 min at 4°C). The cell pellets 

were then resuspended in two volumes of HEPAnoCalcium and a Sysmex analysis was done to determine 

the cell count, before diluting the sample (still in HEPAnoCalcium) to obtain a concentration of 1x109 

cells/L. Eighty µL of RBCs were seeded (which is equivalent to 80’000 cells per well) in 96-well imaging 

plate coated with 0.1 mg/ml poly-L-ornithine. To speed up the sedimentation process, the plate was 

centrifuged 2 min at 140 g and RT. 

Treatment with sodium orthovanadate and image acquisition with digital holographic microscope 

For image acquisition, the plate was placed in the DHM incubator system set at 37°C with high humidity 

and 5 % CO2. The cells were observed at a 20x magnification and four images per well were taken. First, 

3 baseline images were acquired at 5 min interval. The RBCs were then treated with 0.2 % DMSO and 

incubated in the same conditions during 60 min (10 image acquisitions, each 5 min). Finally, the RBCs 

were treated with 2 mM OV (10 µL of 20 mM OV) or control dH2O (Ctrl). Time-lapse images were taken 

once every hour during approximately 18 h. 
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Results and discussion 

The six RCCs used for this experiment evolved normally during storage with an increase in volume 

(Figure 15A), MV count and percentage of hemolysis (Figure 15B). 

 

 

Figure 15 – Evolution of some Red Blood Cell (RBC) aging parameters in Red Cell Concentrates (RCCs). [A] Hematological 
data: RBC count [left], Mean Corpuscular Volume (MCV) [middle] and Standard Deviation of Distribution Width (SD-RDW) 
[right]. [B] Microvesicle (MV) count [left] and percentage of hemolysis [right]. Data for the 6 RCCs. Individual (symbols) and 
mean values (dotted line). 

 

OV treatment inhibits the PTP and thus lead to the accumulation of the pY. Figure 16A shows the pY 

signal after the OV treatment for 1 and 4 h (and the corresponding negative control). The pY 

phosphorylation was observed on specific proteins. They correspond (from top to bottom) to a-

spectrin, b-spectrin, ankyrin-1; a-adducin, b-adducin, band 3, protein 4.1 and two bands around 70 

kDa that could correspond to Syk and Lyn kinases. In the course of RBC storage, the effect of OV and 

therefore the capacity to phosphorylate was progressively decreased (Figure 16B). 

 

 

Figure 16 – Western blot (WB) analysis of tyrosine-phosphorylation (pY) in red blood cell (RBC) membranes proteins under 
sodium orthovanadate (OV) treatment in function of storage time. [A] Representative image of a WB experiment (sample 
2) against pY-containing membrane proteins. OV: OV-treated RBCs, M: molecular weight marker. To be noted that the marker 
bands is coming from the white light image and was superimposed on the chemiluminescence picture. [B] Mean of the total 
relative pY signal (i.e. sum of pY-positive bands normalized by total protein loading [Ponceau red]) for the 6 red cell 
concentrates ± standard deviation. 
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The loss of kinase activity could be explained by the decreasing level of available ATP throughout 

storage because of the metabolic shift from glycolysis to PPP and the general slow-down of the 

metabolism (1.5- to 2-fold decrease over the storage period)35,78,79. 

To identify and quantify phosphoproteins, a label-free quantitative phosphoproteomic 

analysis of RBC membrane proteins treated or not with OV was carried out. T-tests were performed 

on 17 different conditions for the control and 18 for the OV treatment. From the quality control 

analysis, it appeared that one triplicate of the RCC 5 control sample was clearly an outlier (based on 

the ClassI phosphosites). This sample was thus removed from the analysis. Proteins with at least 12 

valid values in at least one group (OV or Ctrl) were kept for the analysis. 

 

 

Figure 17 – Phosphoproteomics of Red Blood Cell (RBC) membranes proteins under Sodium Orthovanadate (OV) treatment. 
[A] Phosphoproteome depth: number of identified phosphoproteins, phospho-peptides, phospho-sites and ClassI phospho-
sites. In different colors of blue are represented the number of phosphorylated Serine ([S], 78.8 %), Threonine ([T], 13.1 %) and 
Tyrosine ([Y], 8.1 %). [B] Comparison of phospho-sites after 1 h of OV treatment versus without any treatment. Volcano plot 
showing t-test p-values versus phospho-site fold changes (log10). Dark blue points correspond to phospho-sites differentially 
quantified and unchanged phospho-sites are in grey. Phosphorylated Tyrosines (pY) are surrounded by a red circle. 

 

The analysis revealed the presence of 2’579 phosphopeptides (5’297 ClassI phosphosites, i.e. 

localization probability > 0.75) corresponding to 609 phosphoproteins (Figure 17A). The distribution of 

pS, pT, and pY sites is 78.8 %, 13.1 %, and 8.1 % respectively. Upon OV treatment, 40 pY-sites belonging 

to 21 different proteins were significantly upregulated (Figure 17B) and 5 were downregulated (the 

complete list of proteins is provided in ANNEX-6). The first 20 upregulated pY-sites belong to proteins 

mainly involved in the cell structure, i.e. Band 3, a- and b-spectrin, a- and b-adducin, protein 4.1, 

ankyrin-1, dematin, tensin-1 and flotillin-2, which is coherent with the WB analysis. 
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The OV treatment induced the release of MVs (Figure 18, left) and hemolysis (Figure 18, right). This 

effect was mainly visible after 4 h of incubation but not after 1 h. Consistently with the phosphorylation 

levels, RBCs stored for 1 day released a higher number of MVs and hemolyzed more compared to RBCs 

stored for 22 or 42 days. 

 

 

Figure 18 – Microvesiculation and hemolysis induced by 1 or 4 h Sodium Orthovanadate (OV) treatment. Number of 
Microvesicles (MVs) released per million Red Blood Cells (RBCs) because of the treatment, i.e. number of MVs in OV sample 
minus Ctrl sample, corrected by the number of RBCs in the sample [left]. Hemolysis induced by the treatment, i.e. percentage 
of hemolysis in OV sample minus control sample [right]. Mean value for the 6 red cell concentrates ± standard deviation. 

 

Finally, the DHM analysis indicated that the RBC morphology was impacted by the OV treatment, i.e. 

increase of SD-OPD (Figure 19A). As shown before (refer to ANNEX-3), this parameter is positively 

correlated with the number of spherocytes in the sample. The increase of SD-OPD signal corresponded 

to the transformation of RBCs from discocytes to echinocytes and finally spherocytes (Figure 19C). 

 

 

Figure 19 – Red Blood Cell (RBC) morphology and effect of Sodium Orthovanadate (OV) treatment evaluated using Digital 
Holographic Microscopy (DHM). [A] OV-induced morphology changes in RBCs stored for 2, 22 and 42 (for Red Cell Concentrate 
[RCC] 1 and 2) or 49 days (for RCC 3 and 4), measured with DHM. The RBCs were plated in a 96-well imaging plate and were 
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then treated with 0.2 % DMSO (dotted lines) or 2 mM OV (solid lines). The plate was incubated at 37°C, 5 % CO2 and high 
humidity during the timelapse analysis (approx. 18 h). Mean SD-OPD for twelve wells ± Standard Deviation (SD). [B] Area 
Under the Curve (AUC) of Standard Deviation of Optical Path Difference (SD-OPD) curves presented in [A]. Mean values for 
the four RCCs ± SD. [C] Illustration of the morphological changes induced by 2 mM OV treatment (top) or Ctrl (bottom). Phase 
images were acquired with DHM at 20x magnification. 

 

The results of the morphological analysis seem to indicate that the effect of OV is not only related to 

the phosphorylation. Indeed, the morphology of RBC stored for 22 days was even more impacted by 

the OV treatment (Figure 19B), although less pY were detected by WB analysis. Similarly, OV induced 

changes of morphology in long-term stored RBCs, whereas the no pY could be detected. Hence, the 

effect of OV could: 1) be related to side-effects, because the vanadate can also inhibits the enzymes 

alkaline phosphatase, ATPase, adenosine kinase and phosphofructokinase80,81, or 2) to the sensitivity 

of the RBCs to the treatment. Hence, one could imagine that aged RBCs will be more impacted by a 

small level of phosphorylation than young ones. 

Conclusions 

The data presented in this Part 2 focused on phosphorylation events of membrane proteins, where 

band 3, b-spectrin and Lyn kinase play a key role. The phosphorylation was here forced inducing the 

release of MVs, morphological changes and hemolysis (OV treatment exacerbated the 

phosphorylation). The capacity of phosphorylation is clearly lost during the storage of RBCs because of 

the progressive ATP depletion. Indeed, rejuvenation experiments (which consists in incubating the 

RBCs during 60 min at 37°C with sodium pyruvate, inosine, adenine, mono- and dibasic sodium 

phosphate) conducted during preliminary tests enabled to fully recover the pY signal in WB analysis. It 

indicates that the kinases are still functional and that the decrease in phosphorylation is a metabolic 

issue. The proteins targeted were then deeply investigated by phosphoproteomics. This analysis 

highlights also the potential differences between in vivo and ex vivo aging82. Indeed, the absence of 

phosphorylation in long-term stored RCCs indicates that the microvesiculation should be triggered by 

other mechanism such as the accumulation of oxidized proteins at the membrane and/or membrane 

perturbation and reorganization. In future experiments, it is planned to use Kinase Inhibitors (KI) in 

order to elucidate the regulation mechanisms and individual contribution of the different pY events to 

the morphological changes. 
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GENERAL CONCLUSIONS 

A blood bag is a confined, static and artificial environment where the RBCs are surrounded by additive 

solution, plastic, other RBCs and, as storage goes on, waste products, rather than plasma and cells 

from the circulation (i.e. leucocytes, platelets and endothelial cells), which implies that the exchanges 

and equilibrium with the environment are totally upset. Moreover, placing the RBCs in hypothermia, 

i.e. 4°C, is not without consequences, notably for the rate of the metabolic fluxes. The two studies 

presented in this Chapter confirmed that the storage impacts profoundly the RBCs. 

Nowadays, RCCs fulfill quality controls if they exhibit, at the end of the storage period, a level 

of hemolysis below 0.8 % and if 75 % percent of the transfused RBCs are still viable 24-h post-

transfusion. These two parameters are however impossible to test for each RCC and for defined time-

points, but are also difficult to measure, for example, assessment of the cell viability requires to 

transfuse RBCs labelled with 51chromium. Other criteria are thus necessary to assess the quality of the 

transfused RCCs. 

To this day, much efforts were made by the transfusion community to find a marker reflecting 

with accuracy the health status of the RBCs within the RCCs in order to predict their efficiency post-

transfusion. For example, a positive relationship between the intracellular ATP concentration and the 

percentage of 24-h recovery post transfusion was demonstrated83. Recently, Paglia et al. proposed 8 

extracellular metabolites to describe the different metabolic phases during storage84. More 

particularly, hypoxanthine levels were shown to be negatively correlated with the recirculation rate 

post-transfusion85. The appearance of cytosolic Peroxiredoxin 2 (Prx 2) at the inner cell membrane was 

proposed by Rinalducci et al. as it reflects the oxidative stress86. Proteins biomarkers in the supernatant 

were also highlighted by D’Alessandro et al.87. Finally, Roussel et al. demonstrated by imaging flow 

cytometry a marked accumulation of small RBCs after 28 days of storage, which are more prone to be 

eliminated after transfusion88. 

Here, different analysis parameters were used as they offer unique tools to assess RBC health 

state. AOP can be an easy-to-monitor single parameter allowing to obtain a quick glance at the cell 

state. Moreover, combining multiple easy-to-obtain parameters providing different information like 

AOP yielding information on oxidative stress, percentage of spherocytes yielding information about 

morphological perturbation and CMF yielding information on membrane state could greatly help 

quantifying RBC aging and helping discard prematurely old RBC pouches before transfusion. 

Interestingly, important differences appeared when looking at RCCs aging markers individually, 

which opens the question of the uniformity of the blood products quality. Indeed, many studies 

showed that the extent of RBCs storage lesions and their capacity for post-transfusion recovery can be 

subject to important variability89. One factor explaining such discrepancy is the “donor-variation 
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effect”90,91. Indeed, blood is a biological product derived from female and male donors, from different 

ages and blood groups, who are genetically distinct, and with specific body constitution and lifestyle 

(dietary, physical, sleeping and smoking habits, etc.)92–94. Then, not just one kind of additive solution is 

used worldwide, but different types with diverse formulations, pH and osmolarity that may impact 

RBCs differently. In addition, the manufacturing parameters, such as the holding time between the 

whole blood donation and the blood component separation, the processing method (whole-blood or 

buffy-coat), the preparation parameters (centrifugation time and speed) and the type of commercial 

kit used, certainly have an effect on the final RCC characteristics95–97. For example, it was demonstrated 

that RBCs from donors exhibiting high levels of plasma uric acid antioxidant are better storers than 

those from low-levels of uric acid98. Inter-donor variability is linked to gender, age, ethnic groups, blood 

group, weight, genetic background and lifestyle99. 

The second study has shown that phosphorylation events of membrane proteins are related 

to various morphological lesions in RBCs. Therefore, problems in phosphorylation may render RBCs 

less efficient in crossing capillaries. Even though this ATP-dependent mechanism was restored in vitro 

or in vivo a few hours after transfusion100, it is important to keep constantly a high level of 

phosphorylation capacity to ensure transfusion efficiency. This capacity could be conserved by 

boosting metabolism (particularly the lower part of glycolysis and the PPP, RBCs being devoid of 

mitochondria). As a benefit, the formation of lesions that decrease the shape change capacity should 

be postponed29. 
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CHAPTER 2 

 

EVOLUTION OF THE ANTIOXIDANT POWER IN THE RED CELL 

CONCENTRATES DURING STORAGE 
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INTRODUCTION 

One major role of the Red Blood Cells (RBCs) is the transport of oxygen (O2) and carbon dioxide (CO2) 

between the lungs and tissues. To fulfill optimally this vital function, these cells have become highly 

specialized, i.e. their cytosolic content is composed at 92 % of Hemoglobin (Hb, dry mass), and they 

are capable of extensive deformation to cross the network of small capillaries for gas perfusion1. 

Because of their close interaction with O2 and the high levels of iron (Fe) they contain, RBCs are 

exposed to metal-catalyzed oxidation2, moreover, a high proportion of endogenous Reactive Oxygen 

Species (ROS) originate from oxyhemoglobin (OxyHb) autooxidation that generates Methemoglobin 

(MetHb) and superoxide anion (O"
∙$). 

To counteract the oxidative burden they are exposed to, RBCs thus possess powerful 

enzymatic and non-enzymatic antioxidant defenses (Figure 1), such as the catalase, Superoxide 

Dismutase (SOD), Peroxiredoxin (Prx), Glutathione Peroxidase (GPx), Thioredoxin (Trx), Thioredoxin 

Reductase (TrxR) and Glutathione Reductase (GR) enzymes; and the reduced Glutathione (GSH), 

methionine, vitamin C (or Ascorbic Acid [AA]) and vitamin E (tocopherols and tocotrienols), and Uric 

Acid (UA) molecules. 

 

Figure 1 – Enzymatic antioxidant systems in red blood cells. The different mechanisms are described in detail in the text 
below. Image taken from Low et al.3 

 

O2
•- radical is eliminated or dismutated into hydrogen peroxide (H2O2) by the SOD (Reaction 1). 

 

2&"
∙$ + 2()

*+,
-⎯/&" + ("&"    Reaction 1 

 

H2O2 molecules are also produced during the divalent O2 reduction by flavo- and metallo- oxidases. For 

example, two H2O2 molecules are produced during the successive degradation of the hypoxanthine 

into xanthine and of the xanthine into UA by the xanthine oxidase (XO, Reactions 2 and 3). Note that 

the presence of the XO enzyme has yet never been reported in RBCs. 

 

(0123456ℎ859 + ("& + &"
:+
;/<456ℎ859 + ("&" Reaction 2 
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<456ℎ859 + ("& + &"
:+
;/=>8?	4?8A + ("&"  Reaction 3 

 

H2O2 crosses easily the cell membranes and can participate to the production of ferryl Hb as well as 

the highly reactive oxygen intermediates hydroxyl radical (OH•) in presence of transition metal ions 

such as Fe or copper (Cu) via the Haber-Weiss reaction. Ferric iron (Fe3+) is first reduced into ferrous 

iron Fe2+ (Reaction 4). The second reaction corresponds to the Fenton reaction (Reaction 5). 

 

&"
∙$ + B9C) → B9") + &"    Reaction 4 

B9") + ("&" → B9C) + &(∙ + &($   Reaction 5 
 

OH• has a very short half-life and a high reduction potential. OH• and ferryl Hb are highly reactive and 

can initiate the peroxidation of lipids and attack the proteins within the cytosol, the cytoskeleton and 

the membrane4–8. 

In cells, H2O2 is detoxified by the catalase, the GPx and Prx enzymes2,9. Catalase (ferriheme 

enzyme) converts two molecules of H2O2 to water and O2 with an extremely high turnover rate 

(Reaction 6). 

 

2("&"
EFGFHFIJ
-⎯⎯⎯⎯⎯/2("& + &"    Reaction 6 

 

GPx (selenocysteine-containing enzymes) can convert H2O2 to water (Reaction 7), as well as lipid 

peroxides (ROOH) to their corresponding alcohols (ROH, Reaction 8) at the expense of GSH which is 

transformed into its oxidized form, i.e. GSSG. 

 

2KL( + ("&"
MNO
-⎯/ KLLK + 2("&   Reaction 7 

2KL( + P&&(
MNO
-⎯/ KLLK + P&( + ("&  Reaction 8 

 

GSH (also named g-glutamylcysteinylglycine) is a tripeptide comprise of glutamate, Cysteine (Cys) and 

glycine. It is a major antioxidant in RBCs. Recycling of GSSG into GSH by the GR requires the 

Nicotinamide Adenine Dinucleotide Phosphate (NADPH). A redox cofactor produced by the Pentose 

Phosphate Pathway (PPP). 

Finally, H2O2 can be decomposed by the thiol-based Prxs (Reaction 9). Six isoforms of Prx are 

known in mammals, Prx 2 being the major form in RBCs. Moreover, it was estimated that Prx 2 is the 

third most abundant in RBCs after Hb and carbonic anhydrase3,10,11. During H2O2 detoxification, two 

highly conserved Cys residues in the Prx 2 catalytic site are involved. Cys51 is first oxidized into sulfenic 

acid and then reacts with Cys172 to form a disulfide bond3. 

Q>3RJSTUJS + ("&" → Q>3VOWSWXJS + ("&  Reaction 9 
 

Prx enzymes are recycled by the Trx and NADPH-dependent TrxR enzymes. 
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In the context of blood storage, oxidative stress was shown to be closely associated with storage 

lesions4,6,12. The antioxidant defense system thus plays an important preventive role. Likewise, an 

impaired antioxidant defense induces a cascade of events related to protein function impairment, 

proteasome inhibition, oxidized protein accumulation at the RBC membrane and their elimination 

through microvesiculation5,13,14. The Microvesicles (MVs) released during storage15,16 could contribute 

to deleterious transfusion effects linked to hemostasis17,18. The quality of RBCs following storage also 

depends on the donor’s characteristics19–21, including antioxidant content, as a higher level of UA (a 

major antioxidant in plasma) contributes to the storability of RBCs22. 

Whereas the consequences of oxidative stress are well-documented (for more details, refer to 

the Introduction), the global antioxidant content has been poorly quantified during RBC storage. 

Different approaches exist to study and quantify the global Antioxidant Power (AOP) in biological 

fluids, including spectrophotometric, fluorescence and electrochemical methodologies. Some of the 

available assays are listed in Table 1. 

 

Table 1 – Assays for the monitoring of the total antioxidant capacity in biological samples23. 

System Assay 

Colorimetric 
or 
Fluorometric 

Hydrogen 
Transfer (HAT) 

Oxygen Radical Absorbance Capacity (ORAC) 

Total Radical-Trapping Antioxidant Parameter (TRAP) 

Inhibited oxygen uptake (IOU) 

Electron 
Transfer (ET) 

Trolox Equivalent Antioxidant Capacity (TEAC) 

Ferric ion Reducing Antioxidant Parameter (FRAP) 

Cupric ion Reducing Antioxidant Capacity (CUPRAC) 

Total phenolics by Folin-Ciocalteu (FC) 

DPPH-based (2,2-Di[4-tert-octylphenyl]-1-picrylhydrazyl) 

ABTS-based (2,2ʹ-Azino-bis[3-ethylbenzothiazoline-6-sulfonic acid]) 

Electrochemical23,24 Cyclic Voltammetry (CV) or Linear Sweep Voltammetry (LSV) 

Differential pulse voltammetry 

Square wave voltammetry 

Reducing Antioxidant Capacity evaluated by Electrolysis (RACE) 

Rapid Electrochemical Screening of Antioxidant Capacity (RESAC) 

Pseudo-titration of water-soluble antioxidants 

 

Each method has its advantages and drawbacks. These include whether the assay is time-consuming, 

easy to use, sufficiently sensitive, specific or global, direct or indirect. In general, the methods based 

on Hydrogen or Electron Transfer (HAT or ET) require several reagents and equipment. These methods 

are generally more complicated and time-consuming compared to the electrochemical systems which 

have multiple advantages for the quantification of AOP in a complex sample. First, they are rapid and 

do not require sample pre-treatment, such as dilution23,25. Moreover, they enable screening of 

complex matrices such as the blood samples. 
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The aim of the following study was to follow the global antioxidant content of RCCs and of extracellular 

samples. This study was done in collaboration with Philippe Tacchini from the Edel-for-Life company 

and a team from the “Laboratoire d’Electrochimie Physique et Analytique” (Ecole Polytechnique 

Fédérale de Lausanne [EPFL], Switzerland). The results presented in this Chapter are based on a paper 

published in Vox Sanguinis26. 

STUDY DESIGN 

Six Red Cell Concentrates (RCCs) were prepared in Saline-Adenine-Glucose-Mannitol (SAGM) additive 

solution and followed for 43 days. The global antioxidant content of RCCs and extracellular samples 

were measured electrochemically using the Edel technology and compared with results obtained from 

a colorimetric assay. UA, suspected to be a major contributor to the extracellular AOP was quantified 

using High-Pressure Liquid Chromatography (HPLC) coupled to UV detection. Hematological data and 

percentage of hemolysis were also recorded, as before (see Material and Methods section of Chapter 

1, Part 1). Finally, a kinetic model was developed to extract quantitative kinetic data on the AOP 

behavior. 

MATERIAL AND METHODS 

The six RCCs used in this study came from three women and three men (donors’ characteristics are 

listed in Table 2). 

 

Table 2 – Donor’s characteristics. Sex, age and blood group (ABO and Rhesus D) of the donor.  

Sample Sex Age /year Blood group 
RCC 1  Female 66 O+ 

RCC 2 Female 26 A+ 

RCC 3 Female 47 O+ 

RCC 4 Male 43 A+ 

RCC 5 Male 27 A+ 

RCC 6 Male 60 A+ 

   RCC: Red Cell Concentrate. 

 

Samples (3 mL per bag) were collected daily from day 1 to 10 and then weekly until day 43. Global AOP 

and hematological data were measured on RCCs. Supernatants were separated from RBCs by 

centrifugation (2000 g, 10 min at 4°C) and used for extracellular AOP and hemolysis measurements. 

Remaining supernatant was saved at –80°C until quantification of the extracellular UA. 

Antioxidant power measurement in red cell concentrates with the Edel technology 

The Edel technology (Edel-for-Life, Switzerland) is an electrochemical system where Screen-Printed 

Electrodes (SPE) are used as sensors for AOP quantification in liquid samples. This amperometric test 

measures the current generated by the oxidation at different potential off hydro-soluble redox active 
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species. The signal recorded (Linear Sweep Voltammogram [LSV]) being proportional to their 

concentration. In addition, pseudo-titration is used to discriminate the biologically relevant 

antioxidants. 

For the AOP measurement with the Edel technology, three elements are required, i.e. an 

electrochemical sensor, a workstation, and a computer (Figure 2). 

 

 

 

The sensor part is a screen-printed, disposable, electrode strip (3-electrode sensor part), composed of 

carbon paste Working (WE) and Counter (CE) Electrodes, and a Ag/AgCl quasi-Reference (RE) Electrode 

(Figure 2A). A dielectric insulation layer is used to define the electrochemical cell above the electrode 

patterns (1 mm2 left for each electrode), and a cover lid with small openings on both sides of the sensor 

structure is added on top to create a capillary. The principle of screen-printing is to deposit layer by 

layer inks on a solid surface through a screen to create the electrode area and to cover this conductive 

track with an insulating coating. Such fabrication technique has the advantage of being reproducible, 

inexpensive, fast and suitable for automatization and large-scale production. It also allows great design 

flexibility and enables electrode miniaturization, which limits the production costs, as well as the 

sample volume and analysis time23,27–29. Additionally, electrochemical workstations (i.e. potentiostats) 

are nowadays available in small and compact portable formats with wireless communication. As a 

result, electrochemical measurements can rapidly be performed at any location, e.g. in the field, in 

hospitals, at bedside or at home. 

The strip is inserted in the potentiostat (EdelMeter), then the electrochemical cell is filled with 

liquid by capillary forces in a fraction of seconds which limits exposure time of the sample to air and 

electrodes surfaces (Figure 2B). Three seconds after loading, an LSV is recorded. To do so, a linear 

potential ramp is applied from 0 V to 1.2 V with a scan rate of 100 mV·s–1. Each electrochemically active 

A 

B 

Figure 2 – Electrochemical measurement of 
antioxidants with the Edel technology.  
[A] Illustration of the electrochemical sensor, 
workstation as well as the output signal.  
[B] Illustration of sample loading.  
AO: antioxidant, I: current in ampere (A), E: potential in 
volt (V). 
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substance in the sample will transfer one or more electrons from the antioxidant molecules to the 

biased WE at a particular redox potential. The recorded current is proportional to the antioxidant 

concentration (the potentials are reported with respect to the RE). 

 

 

Figure 3 – Principle of electrochemical pseudo-titration voltammetry. [A] Typical Linear Sweep Voltammogram (LSV) 
recorded with a scan rate of 100 mV·s–1 (solid line) and Fermi-Dirac function with λ = 0.75 and Ethreshold = 0.9 V (dashed line). 
[B] Result of pseudo-titration voltammetry by modulation of the LSV in [A]. I: Current in ampere (A), E: potential in volt (V). 

 

The LSVs are transformed from a current value in Ampere to an AOP in nW by using the electrochemical 

pseudo-titration voltammetry (Figure 3)23,30. This procedure is used to discriminate in a complex fluid 

the signals from biologically active antioxidants which are by nature easily converted at low redox 

potentials and are fast reactive species. In brief, a mathematical treatment of the recorded curves is 

applied to suppress the signals measured at high potentials (Figure 3A). To do so, the original LSVs are 

multiplied by a Fermi-Dirac function that contains curve points of unity at low potentials and become 

zero at higher potentials (Equation 1). 

 

 Equation 1 
 

where n is the number of transferred electrons (herein n = 1), F is the Faraday constant, E the applied 

potential, R the universal gas constant and T the temperature. Two adjustable parameters, namely λ 

and Ethreshold, are used as a factor modulating the slope and as a potential offset of the Fermi-Dirac 

function. The resulting Imod vs. E curve is represented in Figure 3B. The AOP is then calculated by the 

integration of the Imod over E and is expressed in nW (Equation 2). 
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Figure 4 – Electrochemical pseudo-titration voltammetry for red cell concentrate (RCC) analysis. [A] Evolution of the Linear 
Sweep Voltammogram (LSV) during storage for the extracellular content of a Red Cell Concentrate (RCC). [B] LSVs of additive 
solution Saline-Adenine-Glucose-Mannitol (SAGM), RCC, RCC enriched in Hemoglobin (Hb) and RCC enriched in Ascorbic Acid 
(AA). I: Current in Ampere, E: potential in Volt. 

 

Figure 4A shows the evolution of the LSV curves during storage. Figure 4B shows the original LSVs 

recorded in the additive SAGM solution, in one RCC sample, in the RCC sample enriched with 31 µM 

Hb, corresponding to approximately 0.4 % of hemolysis, and in the RCC sample enriched with 

additional 230 µM AA, a typical concentration for such sample. It demonstrates that this method is not 

affected by background colors or auto-fluorescence, as it is generally the case for other optical 

detection methods, which represents a tangible advantage for the study of RBCs that contain large 

amounts of Hb. The major drawback is that only the water-soluble antioxidants are quantified and that 

it is a bulk analysis that does not permit to establish individually the contribution of each antioxidant 

specie to the global signal. 

Colorimetric antioxidant power measurement 

The extracellular AOP was quantified using a colorimetric method based on the decolorization of the 

green 2,2’-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS×+), which converts 

into colorless ABTS by reduction with antioxidants. The bleaching rate is proportional to the 

antioxidant concentration. Briefly, 80 µL of supernatant were mixed in a cuvette with 800 µL of acetate 

buffer (0.4 mM, pH 5.8) and 40 µL of ABTS×+ in acetate buffer (30 mM, pH 3.6), according to Erel’s 

protocol31, with slight modifications. The absorbance was measured (in duplicate) at 660 nm with a 

NanoDrop spectrophotometer. The assay was calibrated using AA as a standard. 

Uric acid quantification 

One hundred and fifty microliters of supernatant were transferred in Vivaspin 500 columns (Sartorius) 

and centrifuged at 15’000 g, 30 min at 4°C. Then, 30 µL of filtrate were dried (Genevac Ltd) for 45 min 

and stored at -28°C. Just before analysis, the dried samples were dissolved in 90 µL of ammonium 

A B 

AA in RCC (230 µM) 

Hb in RCC (31 µM) 

RCC 
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acetate (100 mM, pH 8) mixed with acetonitrile 45/55 (v/v), vortexed, sonicated for 10 min at room 

temperature and stored on ice for 20 min. After a final centrifugation at 20’800 g, 30 min at 4°C, 45 µL 

of supernatant were transferred into an injection vial. 

One microliter of sample was injected in duplicate on a HPLC apparatus (Dionex UltiMate 3000 

RSLCnano System, Thermo Scientific). The capillary column (ZIC-HILIC, 150 × 0.3mm, 5 µL, SeQuant 

Merck) was kept at 40°C. Chromatography conditions are summarized in Table 3. 

 

Table 3 – High-PressureLliquid Chromatography (HPLC) gradient conditions. 

Time / min % A % B Flow rate / µL/min 
0 5 95 5 

0.5 5 95 5 

15 60 40 5 

17 80 20 5 

20 80 20 5 

20.2 5 95 5 

30 5 95 5 

A: ammonium acetate 100 mM pH 8, B: acetonitrile. 

 

UV signal was measured at 292 nm, specifically for UA detection. Peak integration was calculated using 

the HyStar post-processing software (Bruker Daltonics). The nature of the detected compound was 

confirmed by mass spectrometry (Bruker Daltonics, amazon ETD, negative ionization mode). For 

calibration, UA standard was dissolved in SAGM at concentrations ranging from 0 to 75.0 µM and 

prepared for injection in the same way as the supernatant samples (Figure 5). 

 

 

Figure 5 – Uric Acid (UA) quantification by High-Pressure Liquid Chromatography (HPLC). Chromatogram for UA standard 
at different concentration dissolved in Saline-Adenine-Glucose-Mannitol (SAGM, 30 min gradient) and calibration curves with 
linear regression (Area Under the Curve [AUC] calculated from the chromatogram, linear regression [dotted line] and 
regression coefficient [R2]). Calibration was repeated twice. 

  

30 min gradient elution
UV 292 nm
Retention time approx. 10.5 min
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RESULTS AND DISCUSSION 

Mean values for some of the observed parameters are summarized in Table 4. 

 

Table 4 – Evolution of the Red Cell Concentrates (RCCs) during storage. 

 
Day 1 Day 5 /4+ /6+/ 7+++ Day 29 Day 43 

RBCs (1·1012/L) 6.65 ± 0.32 6.59 ± 0.30 6.53 ± 0.31 6.59 ± 0.34 

MCV (fL) 85.2 ± 3.3 86.9 ± 3.7 91.6 ± 4.2 93.7 ± 4.0 

SD-RDW (fL) 44.7 ± 2.4 46.8 ± 2.1 51.3 ± 4.1 51.6 ± 4.6 

Hemolysis (%) 0.075 ± 0.013 0.077 ± 0.007 0.157 ± 0.041 0.221 ± 0.042 

AOPEdel women (nW) 116.4 ± 19.6 147.8 ± 20.6 112.5 ± 10.0 107.4 ± 5.1 

AOPEdel men (nW) 142.8 ± 18.0 193.9 ± 25.1 147.5 ± 15.9 138.9 ± 15.1 

AOPcolor. women (µM AA equ.) 85.5 ± 19.5 128.7 ± 19.0 + 125.7 ± 13.7 130.7 ± 18.2 

AOPcolor. men (µM AA equ.) 109.7 ± 23.4 184.8 ± 13.6 ++ 159.1 ± 22.8 167.9 ± 23.3 

UA women (µM) 53.4 ± 19.2 100.6 ± 22.6 53.7 ± 9.5 64.9 ± 10.1 

UA men (µM)  70.1 ± 19.2 147.1 ± 13.8 +++ 77.3 ± 14.9 77.1 ± 14.3 

Main Red Blood Cell (RBC) aging parameters followed at day 1, 5 or 4 (+) or 6 (++) or 7 (+++), 29 and 43 of storage. 

Mean values for the six RCCs ± standard deviation. 

MCV: Mean Corpuscular Volume, SD-RDW: Standard Deviation of Distribution Width, AOPEdel: Antioxidant Power measured 

with Edel electrochemical technology, AOPcolor.: antioxidant power measured the colorimetric method, UA: Uric Acid. 

 

The six RCCs exhibited standard hematological values over the storage period, i.e. a slight increase in 

RBC size and population anisocytosis (Figure 6A). Hemolysis reached 0.18, 0.19, 0.20, 0.29, 0.25 and 

0.21 % for RCC 1 to 6, respectively, at the end of the storage period, remaining below the accepted 0.8 

% (Figure 6B). 

 

 

Figure 6 – Evolution of Red Blood Cell (RBC) hematological parameters and hemolysis in the six Red Cell Concentrates (RCCs) 
during storage. [A] RBC count, Mean Corpuscular Volume (MCV) and Standard Deviation of Distribution Width (SD-RDW). [B] 
Percentage of hemolysis. Individual values for the six RCCs ± standard deviation. Red: women, blue: men. 

 

AOPs of all six samples exhibited a steep increase during the first week of storage followed by a 

decrease, until reaching a plateau (Figure 7A). The extracellular AOP is correlated with the AOP of the 

total RCC (R2 = 0.75, Figure 7B) because of the hydrophilic antioxidants present in the extracellular 

medium. AOP levels in the six RCCs are related to the sex of the donor. Indeed, the AOP was generally 

lower in women and remained lower all along the storage compared to men (area under the curve for 

the extracellular AOP was 5063 ± 349 day·nW for women and 6547 ± 668 day·nW for men, p-value = 

0.027). 
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Figure 7 – Evolution of Antioxidant Power (AOP) in the six Red Cell Concentrates (RCCs) during storage. [A] AOP in the whole 
RCC (AOPtot) and extracellular AOP (in the supernatant, AOPext) measured with the electrochemical Edel technology. [B] Linear 
correlation (with regression coefficient [R2]) between global AOP (AOPtot) and AOP in supernatant (AOPext). [C] Extracellular 
AOP (AOPext) measured with the colorimetric assay. Individual (symbols) and mean values (dotted lines) for the six RCCs ± 
standard deviation. Red: women, blue: men. 

 

The trends for AOPs measured with the electrochemical method and colorimetric assay were similar 

for both early-storage trends and sex-related differences (Figure 7C). However, a slight increase was 

observed at the end of storage instead of a plateau, which is not related to extracellular Hb. One 

hypothesis to explain this effect could be the presence of lipophilic antioxidants stemming from aged 

RBCs at the end of the storage detected spectrophotometrically and not with the EdelMeter. 

To quantitatively describe the observed trends, a kinetic model has been developed by the 

team from the EPFL. The kinetic model of consecutive reactions was selected. It consists of two 

consecutive, irreversible first order reactions converting a reagent AOpre into an intermediate, i.e. the 

AO (which stands for antioxidant), and then the AO into a product AOox, that corresponds chemically 

to the oxidation of the antioxidant. In the human metabolism, antioxidants are permanently generated 

and/or released from various sources before becoming effective, herein simplified as AOpre. The 

antioxidants are constantly consumed, for instance to reduce reactive oxygen species. Hence, the AO 

can be considered as an intermediate, generated with a heterogeneous reaction rate constant k1 and 

degraded with a heterogeneous rate constant k2 (Reaction 10). 
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Where AO stands for antioxidant, AOpre stands for precursors and AOox for the oxidized AO. k1 and k2 

are kinetic constants that represent the production and the consumption of AO, respectively. The 

change of the concentrations of AOpre, AO and AOox can be described as follows (Equations 3-7): 

 

SYZ+[\]^

SG
= −abYc&dRJ^     Equation 3 

Yc&dRJ^ = Yc&dRJ^e9
$fgG + c&dRJ,UViIG  Equation 4 

S[Z+]

SG
= abYc&dRJ^ − a"[c&]    Equation 5 

S[Z+]

SG
+ a"[c&] = abYc&dRJ^e9

$fgG + abc&dRJ,UViIG Equation 6 

S[Z+lm]

SG
= a"[c&]     Equation 7 

 

The above differential equations are solved by the method of integral factors, which results the 

following equation describing the AOP development in the extracellular samples for the investigated 

period (Equation 8): 

 

[c&] = [c&]e9$fnG +
fg

fn$fg
Yc&dRJ^eo9

$fgG − 9$fnGp +
fg
fn
c&dRJ,UViIG  Equation 8 

 

This equation can be transferred to the AOP. The AOP as a function of time is thus expressed 

considering 1st-order reactions as follows (Equation 9): 

 

c&Q(6) = c&Qe9$fnG +
fg

fn$fg
c&QdRJ,eo9$fgG − 9$fnGp +

fg
fn
c&dRJ,UViIG Equation 9 

 

This equation was applied to fit the measured AOP of the extracellular samples in Figure 8. 

 

 

Figure 8 – Fitting of Antioxidant Power (AOP) curves. Measured extracellular AOP (grey bars, mean values ± standard 
deviation) for the individual Red Cell Concentrates (RCCs) with curve-fits for the kinetic model (dashed lines). Red: women, 
blue: men. 
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The values obtained from the fitting procedure are shown in Table 5. 

 

Table 5 – Antioxidant Power (AOP) fitting parameters for each Red Cell Concentrate (RCC). Fitting parameters for the AOP 
development using Equation 9 for the extracellular samples. 

 Women Men 
  RCC 1 RCC 2 RCC 3 RCC 4 RCC 5 RCC 6 
AOP0 / nW -49.15 -31.62 -47.34 -64.21 -29.94 -27.71 

AOPpre,0 / nW 96.73 66.09 136.95 203.42 84.98 164.58 

AOPpre,const / nW 25.73 9.086 110.59 149.71 56.65 120.13 

k1 / days-1 0.955 0.495 0.279 0.191 0.356 0.157 

k2 / days-1 0.199 0.044 0.279 0.191 0.134 0.157 

  k1 and k2: reaction rate constants. 

 

Kinetic constant k2 was lower than k1, which is supported by the slow decay observed during storage. 

The efflux phase represented by k1 was on average higher in women, and the second phase (slower 

and represented by k2) was independent from the donor’s sex. 

The AOP0 is mathematically the AOP at day 0, but AOpre,const needs to be included to get the real 

AOP value at day 0, i.e. the date of donation and blood treatment (Equation 10). 

 

c&Q(A40	0) = c&Qe +
fg
fn
c&QdRJ,UViIG  Equation 10 

 

The calculated AOP of the extracellular samples at day 0 was 74.2, 69.5, 63.2, 85.6, 120.3 and 92.4 nW 

for the RCC 1 to 6, respectively, values that are below the AOP after long storage periods. 

The UA molecule makes a big contribution to the antioxidant defense of RCCs. As confirmed 

by the increase of UA concentration, similarly to the AOP, which occurred during the first week of 

storage (Figure 9A), reaching a maximum after five days for the women and seven days for the men 

(maximum UA of 100.6 ± 22.6 µM for women and 147.1 ± 13.8 µM for men, p-value = 0.038). 

 

 

Figure 9 – Evolution of extracellular Uric Acid (UA) concentration in the six Red Cell Concentrates (RCCs) during storage. [A] 
Extracellular UA concentration (UAext) measured by High-Pressure Liquid Chromatography (HPLC). [B] Linear correlation (with 
regression coefficient [R2]) between the extracellular AOP (in the supernatant, AOPext) measured with the electrochemical Edel 
technology and the UAext. Individual (symbols) and mean values (dotted lines) for the six RCCs ± standard deviation. Red: 
women, blue: men. 
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Men exhibited a higher UA concentration during the whole storage (area under the curve of 2687 ± 

416 day·µM for women and 4231 ± 541 day·µM for men, p-value = 0.017). A plateau was reached after 

approximately three weeks in women and four weeks in men. Extracellular UA concentration and AOP 

are strongly positively correlated (R2 = 0.94, Figure 9B). 

CONCLUSIONS 

The antioxidant capacity reflects the metabolic activity during the first two weeks of storage as 

previously reported32,33. The changes of AOP are visible earlier compared to other aging markers, i.e. 

hemolysis and microvesiculation, lactate accumulation, changes of morphology, etc., which only 

become significantly visible after several weeks of storage14,33,34. 

The increase in AOP during the first week could result from an initial boost in RBC metabolism, 

as shown by increasing intracellular Adenosine Triphosphate (ATP) and GSH concentrations during the 

first 10 days of storage32. Extracellular UA concentration evolved similarly. Equilibration between 

intracellular and extracellular media could also explain the observed trend, as suggested by the steep 

increase of extracellular UA and the decrease of intracellular UA observed by our group and by Bordbar 

et al32. Indeed, because of blood processing and SAGM addition to the RBCs, the residual plasma is 

diluted. In theory, the calculated dilution factor of plasma in the RCCs is 11. This number is however 

subject to large variations (e.g. because of different blood processing methods), as pointed out by 

Jordan and Acker36. Extracellular UA concentration, normally comprised between 120 and 450 µM in 

human plasma, is subsequently diluted by the same factor.  

To have a quick glance at the AOP evolution throughout the ex-vivo journey of the RBCs for 

transfusion, a preliminary experiment was conducted where the AOP was measured from whole blood 

collection to RCC preparation and during storage (see ANNEX-7). The results obtained showed 

significant effect of blood processing on the RCC AOP and suggest that the RBCs are impacted by their 

new environment from the very beginning of the storage period. 

The dynamic of UA concentration is governed by the active or passive transport of UA through 

the membrane. Active UA transport is probably ATP-dependent37 and it was also shown that 

membrane permeability to UA increases with storage duration38. An equilibrium was reached after 

one week of storage (maxima of extracellular UA concentration at day five for women and day seven 

for men). In a second phase, AOP decreased because the glycolysis slowdown impairs intracellular 

antioxidant production (e.g. reduction of intracellular glutathione after 2 weeks). Subsequent 

accumulation of oxidative species and/or re-entry of UA to protect the intracellular space against 

oxidative stress could explain in part the decrease of extracellular UA concentration22. Moreover, as 

the purine pathway is not active since the Adenosine Monophosphate (AMP) is transformed in inosine 

monophosphate, consumed UA is not replaced32,35. The time at which the plateau is reached correlates 
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with the reactivation of the purine metabolism (inhibition of the nucleotide salvage pathway). The 

feeding of the glycolysis through the PPP and the production of ribose-5 phosphate releases 

hypoxanthine and xanthine. They partially participate to the synthesis of UA in situ. This could explain 

why the extracellular UA concentration and AOP did not decrease to zero. It must be noticed that the 

basal AOP level is reached earlier in women than in men. This loss of antioxidant capacity at the end 

of the storage corroborates the defect in metabolism activity32, and the appearance of oxidative stress 

markers11 and oxidized molecules4–6. 

In conclusion, the results obtained with the electrochemical and colorimetric AOP 

measurements suggest that the antioxidant capacity of the investigated RCCs is donor-dependent and 

impacted by changes in the RBC environment because of the blood processing. Moreover, the AOP 

was closely correlated to the UA concentration that accounts for 60-70 % of the extracellular AOP in 

RCCs39. UA level was proposed as a biomarker of RBCs storability22. The kinetics of the AOP and the 

extracellular concentration of UA during storage are in accordance with the three metabolic phases 

previously identified32. Notably, the kinetic constants might demonstrate a donor’s specific release of 

AOP (k1) and a consumption of UA (k2), depending upon the storage conditions. The kinetic model 

could be integrated into general kinetic analyses related to the RBC metabolism40,41 and therefore be 

used as predictive measurement for the evolution of lesions. 

It must be emphasized that in the context of blood transfusion, the Edel technology has already 

been validated as a quality control test to assess the completeness of the pathogen (virus, bacteria 

and parasites) or cell inactivation procedures42. Indeed, Abonnenc et al.25 demonstrated that the 

successful treatment with INTERCEPTä of platelets and plasma decreased significantly the AOP, 

because this method (as well as the MIRASOLâ) including photochemical inactivation technique and 

that relies on the application of a photosensitizer (amotosalem-HCl) and UVA illumination, is known to 

produce ROS. 

  



 

 CHAPTER 2  76 

REFERENCES 

1. Nemkov T, Reisz JA, Xia Y, Zimring JC, D’Alessandro A. Red blood cells as an organ? How deep 

omics characterization of the most abundant cell in the human body highlights other systemic 

metabolic functions beyond oxygen transport. Expert Rev. Proteomics. 2018;15(11):855–864.  

2. Cimen MY. Free radical metabolism in human erythrocytes. Clin. Chim. Acta. 2008;390(1–

2):1–11.  

3. Low FM, Hampton MB, Winterbourn CC. Peroxiredoxin 2 and peroxide metabolism in the 

erythrocyte. Antioxid. Redox Signal. 2008;10(9):1621–1630.  

4. Kriebardis AG, Antonelou MH, Stamoulis KE, et al. Progressive oxidation of cytoskeletal 

proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell. Mol. Med. 
2007;11(1):148–155.  

5. Delobel J, Prudent M, Rubin O, et al. Subcellular fractionation of stored red blood cells reveals 

a compartment-based protein carbonylation evolution. J. Proteomics. 2012;76:181–193.  

6. Delobel J, Prudent M, Tissot J-D, Lion N. Proteomics of the red blood cell carbonylome during 

blood banking of erythrocyte concentrates. Proteomics Clin. Appl. 2016;10(3):257–266.  

7. Delobel J, Prudent M, Crettaz D, et al. Cysteine redox proteomics of the hemoglobin-depleted 

cytosolic fraction of stored red blood cells. Proteomics Clin. Appl. 2016;10(8):883–893.  

8. Wither M, Dzieciatkowska M, Nemkov T, et al. Hemoglobin oxidation at functional amino acid 

residues during routine storage of red blood cells. Transfusion. 2016;56(2):421–426.  

9. Yoshida T, Shevkoplyas SS. Anaerobic storage of red blood cells. Blood Transfus. 
2010;8(4):220-236.  

10. Matte A, Bertoldi M, Mohandas N, et al. Membrane association of peroxiredoxin-2 in red cells 

is mediated by the N-terminal cytoplasmic domain of band 3. Free Radic. Biol. Med. 
2013;55:27–35.  

11. Rinalducci S, D’Amici GM, Blasi B, et al. Peroxiredoxin-2 as a candidate biomarker to test 

oxidative stress levels of stored red blood cells under blood bank conditions. Transfusion. 

2011;51(7):1439–1449.  

12. Kriebardis AG, Antonelou MH, Stamoulis KE, et al. Membrane protein carbonylation in non-

leukodepleted CPDA-preserved red blood cells. Blood Cells. Mol. Dis. 2006;36(2):279–282.  

13. Prudent M, Rappaz B, Hamelin R, et al. Loss of Protein Tyr-phosphorylation During in vitro 

Storage of Human Erythrocytes: Impact on RBC Morphology. Transfusion. 2014;54:49A-50A.  

14. Prudent M, Tissot J-D, Lion N. The 3-phase evolution of stored red blood cells and the clinical 

trials: an obvious relationship. Blood Transfus. 2017;15(2):188–188.  

15. Rubin O, Crettaz D, Canellini G, Tissot J-D, Lion N. Microparticles in stored red blood cells: an 

approach using flow cytometry and proteomic tools. Vox Sang. 2008;95(4):288–297.  

16. Rumsby MG, Trotter J, Allan D, Michell RH. Recovery of membrane micro-vesicles from human 

erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte 

shape transformation. Biochem. Soc. Trans. 1977;5(1):126–128.  

17. Kriebardis A, Antonelou M, Stamoulis K, Papassideri I. Cell-derived microparticles in stored 

blood products: innocent-bystanders or effective mediators of post-transfusion reactions? 

Blood Transfus. 2012;10(Suppl 2):s25–s38.  

18. Rubin O, Delobel J, Prudent M, et al. Red blood cell-derived microparticles isolated from blood 

units initiate and propagate thrombin generation. Transfusion. 2013;53(8):1744–1754.  

19. Dern RJ, Gwinn RP, Wiorkowski JJ. Studies on the preservation of human blood. I. Variability 



 

 CHAPTER 2  77 

in erythrocyte storage characteristics among healthy donors. J. Lab. Clin. Med. 
1966;67(6):955–965.  

20. Tzounakas VL, Kriebardis AG, Papassideri IS, Antonelou MH. Donor-variation effect on red 

blood cell storage lesion: A close relationship emerges. Proteomics Clin. Appl. 2016;10(8):791–

804.  

21. Jordan A, Chen D, Yi Q-L, et al. Assessing the influence of component processing and donor 

characteristics on quality of red cell concentrates using quality control data. Vox Sang. 
2016;111(1):8–15.  

22. Tzounakas VL, Georgatzakou HT, Kriebardis AG, et al. Uric acid variation among regular blood 

donors is indicative of red blood cell susceptibility to storage lesion markers: A new hypothesis 

tested. Transfusion. 2015;55(11):2659–2671.  

23. Lesch A, Cortés-Salazar F, Prudent M, et al. Large scale inkjet-printing of carbon nanotubes 

electrodes for antioxidant assays in blood bags. J. Electroanal. Chem. 2014;717–718:61–68.  

24. Pisoschi AM, Cimpeanu C, Predoi G. Electrochemical Methods for Total Antioxidant Capacity 

and its Main Contributors Determination: A review. Open Chem. 2015;13(1): DOI: 

10.1515/chem-2015-0099.  

25. Abonnenc M, Crettaz D, Tacchini P, et al. Antioxidant power as a quality control marker for 

completeness of amotosalen and ultraviolet A photochemical treatments in platelet 

concentrates and plasma units. Transfusion. 2016;56(7):1819–1827.  

26. Bardyn M, Maye S, Lesch A, et al. The antioxidant capacity of erythrocyte concentrates is 

increased during the first week of storage and correlated with the uric acid level. Vox Sang. 
2017;112(7):638–647.  

27. Renedo OD, Alonso-Lomillo MA, Martínez MJA. Recent developments in the field of screen-

printed electrodes and their related applications. Talanta. 2007;73(2):202–219.  

28. Kurita R, Yabumoto N, Niwa O. Miniaturized one-chip electrochemical sensing device 

integrated with a dialysis membrane and double thin-layer flow channels for measuring blood 

samples. Biosens. Bioelectron. 2006;21(8):1649–1653.  

29. Couto R a. S, Lima JLFC, Quinaz MB. Recent developments, characteristics and potential 

applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta. 

2016;146:801–814.  

30. Tacchini P, Lesch A, Neequaye A, et al. Electrochemical Pseudo-Titration of Water-Soluble 

Antioxidants. Electroanalysis. 2013;25(4):922–930.  

31. Erel O. A novel automated direct measurement method for total antioxidant capacity using a 

new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37(4):277–285.  

32. Bordbar A, Johansson PI, Paglia G, et al. Identified metabolic signature for assessing red blood 

cell unit quality is associated with endothelial damage markers and clinical outcomes. 

Transfusion. 2016;56(4):852-862. 

33. D’Alessandro A, Kriebardis AG, Rinalducci S, et al. An update on red blood cell storage lesions, 

as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–219.  

34. Bardyn M, Rappaz B, Jaferzadeh K, et al. Red blood cells ageing markers: a multi-parametric 

analysis. Blood Transfus. 2017;15(3):239–248.  

35. Hess JR, Lippert LE, Derse-Anthony CP, et al. The effects of phosphate, pH, and AS volume on 

RBCs stored in saline-adenine-glucose-mannitol solutions. Transfusion. 2000;40(8):1000–

1006.  

36. Jordan A, Acker JP. Determining the Volume of Additive Solution and Residual Plasma in 



 

 CHAPTER 2  78 

Whole Blood Filtered and Buffy Coat Processed Red Cell Concentrates. Transfus. Med. 
Hemotherapy. 2016;43(2):133–136.  

37. Lucas-Heron B, Fontenaille C. Urate transport in human red blood cells. Activation by ATP. 

Biochim. Biophys. Acta. 1979;553(2):284–294.  

38. Buzdygon KJ, Zydney AL. Effect of storage time on red blood cell membrane permeability to 

creatinine and uric acid. ASAIO Trans. 1989;35(3):693–696.  

39. Tzounakas VL, Kriebardis AG, Georgatzakou HT, et al. Data on how several physiological 

parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase 

deficient and sufficient donors. Data Brief. 2016;8:618–627.  

40. Bordbar A, Jamshidi N, Palsson BO. iAB-RBC-283: A proteomically derived knowledge-base of 

erythrocyte metabolism that can be used to simulate its physiological and patho-physiological 

states. BMC Syst. Biol. 2011;5:110.  

41. Nishino T, Yachie-Kinoshita A, Hirayama A, et al. Dynamic Simulation and Metabolome 

Analysis of Long-Term Erythrocyte Storage in Adenine–Guanosine Solution. PLoS ONE. 

2013;8(8):e71060.  

42. Abonnenc M, Tacchini P, Crettaz D, et al. Quality control assay to monitor the completeness 

of pathogen or targeted cell inactivation treatments in biological, foodstuff, drinks and 

cosmetics products. 2017; WO 2017/103661 Al. 

 

  



 

 CHAPTER 2  79 

  



 

 CHAPTER 2  80 

 



 

 81 

 

 

  

CHAPTER 3 

 

MODIFICATION OF THE ADDITIVE SOLUTION FORMULATIONS TO 

REDUCE RED BLOOD CELL STORAGE LESIONS 
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INTRODUCTION 

From decades of research and as shown in the previous chapters, it is well known that the Red Blood 

Cells (RBCs) accumulate a broad range of physicochemical changes during their storage at 4°C, 

rendering these cells qualitatively different than the fresh ones1,2. Some of these lesions are reversible. 

Notably, the levels of Adenosine Triphosphate (ATP) and 2,3-Diphosphoglycerate (2,3-DPG) that were 

shown to be rapidly replenished after transfusion3. Later during storage (around week 4), irreversible 

lesions such as proteins post-translational modifications (i.e. carbonylation, glycation, and 

methylation4), fragmentation and aggregation start to appear. Lipids are also subject to peroxidation. 

Ultimately, Microvesicles (MVs) are released resulting in irreversible membrane surface reduction 

leading to spheroechino- and sphero-cystosis and to the reduction of the RBC deformability. RBCs 

stored for long periods also have tendency to lose the CD47 “do not eat me” signal. As a consequence, 

extensively damaged cells become targets for rapid removal from the circulation of the transfusion 

recipient. Luten et al. determined that the mean 24-hour Post-Transfusion Recovery (PTR) of RBCs 

stored in Saline-Adenine-Glucose-Mannitol (SAGM) for a short period of time (0-10 days) was of 86.4 

± 17.8 % and dropped to 73.5 ± 13.7 % after 25 to 35 days of storage5. To meet the official guidelines, 

it is accepted that up to 25 % of the RBCs are rapidly removed after a transfusion (or that at least 75 % 

of the RBCs should survive 24-hour post-transfusion). This opens the question of transfusion efficiency 

in function of storage duration. 

Beyond mitigation of the beneficial impact of the transfusion, the storage-related changes in 

RBCs can even trigger deleterious side effects, affecting the patient clinical outcomes6–9. Hence, the 

MVs that progressively accumulate in the supernatant of the Red Cell Concentrates (RCCs) are known 

to have hemostatic, pro-thrombotic and pro-inflammatory effects10–13. Indeed, the exposure of 

negatively charged phospholipids make the MVs prone to initiate and propagate the generation of 

thrombin in plasma13. Bioactive lipids are also implicated in Transfusion-Related Acute Lung Injury 

(TRALI), and were shown to have immunomodulatory effects. 

Moreover, prolongated storage of RCCs (i.e. six weeks) results in enhanced extravascular 

hemolysis and increased levels of Non-Transferrin Bound Iron (NTBI) in circulation, as demonstrated 

by Hod et al.14. Similarly, Rapido et al. observed, in a study were sixty healthy volunteers were 

randomly transfused with one autologous leukoreduced RCC after one to six weeks of storage, a 

decline of transfusion efficiency proportional to the storage duration (i.e. decreased 20-hour RBC 

recovery, elevation in Hematocrit [HCT] and serum ferritin)15. Moreover, the older units (six weeks) 

were associated with a significant increase in extravascular hemolysis (transferrin saturation and 

increased serum NTBI) after six weeks of storage. The consecutive accumulation of cell-free 

Hemoglobin (Hb) in organs such as the spleen, the kidney and/or the liver might alleviate adverse 
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reactions such as increased inflammation or predisposition to infections16–21. Long-term storage of RBC 

products also has vascular effects. Indeed, aged RBCs reduce the bioavailability of Nitric Oxide (NO) by 

impairing its de novo synthesis, as well as via its scavenging by free hemes and MVs for example22,23. 

NO is a powerful vasodilator, whose depletion could limit oxygen (O2) perfusion to tissues and more 

particularly to end organs. 

Some studies (randomized trials, retrospective researches and meta-analyses) suggested that 

patients transfused with short- or long-term stored RBCs have similar clinical outcomes24–30, whereas 

others demonstrated the adverse effects of transfusing long-term stored RBCs31–36. Recently, Goel et 

al. showed in a retrospective study that transfusion of RCCs of more than 35 days was associated with 

increased morbidity, and even higher mortality for the most critically ill patients36. In 2018, Jones et al. 

analyzed data acquired during the PROPPR (Pragmatic, Randomized Optimal Platelet and Plasma 

Ratios) trial and concluded that massive transfusion (≥10) of packed RBC stored for 22 days or more 

increased the likelihood of 24-hour mortality33. 

Up to now, no consensus has been found in the transfusion community concerning the 

potential danger of transfusing “old” blood. The discrepancy between the different studies is 

imputable to the fact that in addition to storage duration, many other parameters can be associated 

with the transfusion outcomes. First, there is the fact that each transfused patient is unique, i.e. 

diagnostic and co-morbidities, number of blood products received, age, sex, etc. In addition, the donor 

characteristics surely affect the transfusion outcome37–40. For example, a retrospective study 

demonstrated that blood donated by women who were pregnant once increased the rate of mortality 

in male patients but not in other women, suggesting that more factors than only blood groups define 

the fine donor-recipient compatibility match38. Moreover, heterogenous results can be caused by the 

blood processing and type of additive solutions used for the preparation of the transfused blood 

products41. Finally, inconsistencies could be attributed to the categorization of the RCC age. Indeed, in 

clinical studies (mostly observational or retrospective), long-term stored RCCs have a mean age of 26 

± eight days whereas it was shown in vitro that irreversible lesions accumulate around four to five 

weeks of storage42. 

In conclusion, even if we assume that no adverse effects are associated with transfusion of 

long-term stored RBCs, despite the alterations they accumulate, we should wonder about the 

efficiency of such labile blood products. To answer this central question, more studies assessing the 

storage duration with the RBC post-transfusion recovery and survival are needed43. Overall, the above 

observations open the question of the transfusion practices related to the age of RBCs, but reduction 

of the RCC shelf life is probably not the best solution to this issue as it would induce shortage of blood 

product inventory44. Therefore, different strategies were proposed in the past decades45, such as the 

development of acellular Hb-Based Oxygen Carriers (HBOCs)46, or the ex vivo generation of RBCs from 
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stem cells47–50, as well as the cryopreservation51,52, anaerobic storage53–57 or rejuvenation of the 

donated RBCs58–60. A lot of research was also devoted to the improvement of stored RBC quality via 

the modification of the additive solution formulations61–63. 

The studies presented in this Chapter will focus on this last approach. First, the aim will be to 

counteract the effects of blood processing. The strategy will consist in adding protective molecules 

naturally found in the human plasma at physiological levels. The choice of the added compound was 

based on the observations made during the study presented in Chapter 264. Then, in Part 2, different 

molecules having potential antioxidant action will be added in the blood bags. The selection of the 

compound added was this time based on the literature. 
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PART 1: RESTORATION OF PHYSIOLOGICAL AMOUNTS OF 

ENDOGENOUS ANTIOXIDANTS 

The normal Uric Acid (UA) levels measured in the serum is 120-420 µM, close to its limit of solubility65. 

Such high concentration is the result of a series of mutations that conducted to the silencing of the 

uricase gene (uricase enzyme degrades UA into allantoin). Moreover, UA is efficiently reabsorbed at 

the level of the kidneys. 

UA is an endogenous antioxidant molecule capable of neutralizing a large range of ROS and 

more particularly the singlet O2 and free radicals by accepting a single electron66,67. It is an end product 

of the purine metabolism. UA was estimated to contribute at 60 % to the Ferric Reducing Ability of 

Plasma (FRAP)68. Ames et al. even proposed that such powerful antioxidant system constitutes an 

evolutionary advantage by reducing the cellular oxidative stress and thus the occurrence of cancers, 

explaining the exceptional lifetime of the human beings66. 

As shown in Chapter 2, because of the preparation of the labile blood product, the plasma that 

normally surrounds the RBCs is almost completely replaced by additive solution. The exogenous 

antioxidant defenses are subsequently reduced, which in turn impacts the intracellular Antioxidant 

Power (AOP). Consequently, stored RBC are more sensitive to oxidative stress and accumulate 

oxidative lesions during storage. 

In the framework of RBC storage, plasma UA level was shown to be a potential storability 

biomarker. Indeed, Tzounakas et al. observed that RBCs from donors with a high serum UA 

concentration (447.6 ± 29.8 µM) aged better in leukoreduced RCC collected in citrate-phosphate-

dextrose (CPD) anticoagulant and stored in SAGM solution. Indeed, the RBCs from “high-UA” donors 

had reduced indicators of oxidative stress, of intracellular Ca2+ accumulation and of 

spheroechinocytosis, in comparison to those from donors with low levels of UA (281.5 ± 14.9 µM)69. In 

a more recent study, the same team confirmed the association between donor serum UA 

concentration and the fragility of RBCs stored in non-leukoreduced Citrate-Phosphate-Dextrose-

Adenine-1 (CPDA-1) RCCs70. 

In the light of these observations and knowing that only residual amount of plasma remains in 

the RCCs71, the aim of the two following studies was to supplement the RCCs with physiological 

amounts of UA and then with UA plus Ascorbic Acid (AA). Which could avoid a potential metabolic 

shift, prevent the depletion of intracellular antioxidants, as well as provide an extracellular protective 

environment. 
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PART 1.1: Supplementation of red cell concentrates with uric acid  

Study design 

To evaluate the effect of UA addition, four CPD-SAGM RCCs supplemented with physiological levels of 

UA were stored at 4°C and followed during 70 days (Figure 1). 
 

 
Figure 1 – Experimental workflow: preparation of the Red Cell Concentrates (RCCs), supplementation with Uric Acid (UA) 
and follow-up. Split of the four RCCs in two subunits, treatment with 380 µM of UA for the RCCs donated by men and 320 µM 
in those given by women. The RCCs were followed during 70 days of storage at 4°C. The hematological parameters, pH, 
antioxidant power in the supernatant (AOPSN), morphology, number of small cells, release of Microvesicles in the supernatant 
(MVSN) and hemolysis were analyzed. 

 

After reception, each RCC was split in two subunits in sealed conventional storage bags and treated 

with control or UA stock solutions. According to the paper of Fathallah-Shaykh and Cramer72, the UA 

concentration in serum of adults is 305.4 ± 74.4 µM for the men and 252.8 ± 65.4 µM for the women. 

Here, the RCCs were supplemented with the maximal UA extracellular concentration, i.e. 380 µM and 

320 µM respectively. Then, a panel of analyses was done to evaluate the evolution of the storage 

lesions. 

Material and methods 

Preparation and treatment of the red cell concentrates 

Four RCCs stored in CPD-SAGM at 4°C were used for this study (see donor’s characteristics in Table 1). 
 

Table 1 – Donor’s characteristics. Sex, age and blood group (ABO and Rhesus D) of the donor. 

Sample Sex Age / year Blood group 
RCC 1  Male 31 A + 
RCC 2 Male 38 AB + 
RCC 3 Female 62 O + 
RCC 4 Female 26 A + 

   RCC: red cell concentrate. 
 

The whole blood units were donated by two men and two women and stored overnight at Room 

Temperature (RT). Early the next morning, the products were processed using routine procedures and 
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sent to our laboratory as quickly as possible to limit as much as possible the delay between the plasma 

reduction and UA supplementation (Day 0). 

The stock solutions (26x concentrated) were prepared by dissolving UA powder in SAGM in 

presence of NH3 that helps to the UA dissolution. The same amount of NH3 was added in the control. 

The solutions were then filtrated at 0.22 µM to limit bacterial contamination. As we assumed that the 

RBCs in the split RCCs are surrounded by 50 mL of SAGM additive solution (this quantity is probably 

slightly overestimated), 2 mL of 26x stock solution (i.e. 9.87 mM UA for men and 8.27 mM UA for 

women, in presence of 29.5 µM or 0.056 % NH3) were injected in the blood bags in a laminar flow 

hood. 

Follow-up during storage 

Approximatively 2.5 mL of RCC were taken daily during the first 10 days of storage and then weekly 

until expiration at day 42, an additional time point was added at day 70. The percentage of small cells 

was also evaluated at day 57 by imaging flow cytometry. Hematological values were analyzed with a 

Sysmex automate and the pH of the RCC was measured (Orion SA 520 pH-meter and Orion Micro 8228 

PerpHecT ROSS electrode). The samples were then centrifuged at 2000 g during 10 min at 4°C and the 

supernatant was collected for AOP quantification (EdelMeter potentiostat electrochemical analyzer), 

MV count (flow cytometry), and determination of percentage of hemolysis (Harboe direct 

spectrophotometric method with the Allen correction). In parallel, RBCs were washed twice in 0.9 % 

NaCl (centrifugation as before) and finally resuspended in two volumes of HEPA for morphology 

analysis by Digital Holographic Microscopy (DHM). More details about the analytical methods used can 

be found in Part 1 of Chapter 1. 

Small cell analysis 

The analysis of the small cells was done by Michael Dussiot and Pascal Amireault (Institut Imagine, 

Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic 

Implications, Laboratoire d’Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris 

Descartes, Inserm, CNRS, Paris, France). The projected surface area of the RBCs was characterized 

using imaging flow cytometry (ImageStream X Mark II, AMNIS part of EMD Millipore). The exact 

procedure is described in the paper from Roussel et al. published in Transfusion in 201773. Shortly, the 

RBCs were diluted at 1 % HCT in a modified Krebs-albumin solution and imaged at 60x magnification 

with the AMNIS flow cytometer. The projected surface area of focused, front view RBCs was measured 

post-acquisition via the IDEAS software. The distribution of the projected surface area was then 

plotted on frequency histograms and the small cells were segregated from the “normal” ones using 

the nadir (local minima) of the bimodal distribution. 
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Results and discussion 

The evolution observed at the level of the hematological parameters and the pH were similar between 

control or UA conditions for each RCC and evolved as usual (Figure 2A and 2B). The RBCs gained on 

average 6.6 fL over 70 days for the control as well as the UA samples and the anisocytosis increased 

gradually, reflecting morphological changes. 
 

 
Figure 2 – Red Blood Cell (RBC) aging markers in Red Cell Concentrates (RCCs) supplemented with Uric Acid (UA). Part 1. [A] 
Hematological data: RBC count, Mean Corpuscular Volume (MCV) and Standard Deviation of Distribution Width (SD-RDW) 
measured with Sysmex analyzer. [B] pH in the RCCs. [C] Antioxidant Power (AOP) in supernatant quantified by pseudotitration 
voltammetry with EdelMeter. Mean value ± standard deviation. 

 

The pH was about 7.1-7.2 at day 0 and dropped to 6.6-6.5 at day 42 and around 6.5-6.4 at day 70 for 

all RCCs. Such acidification can be imputed to rise of extracellular lactate levels and reflects the 

accumulation in the supernatant of cellular metabolic waste products. 

The extracellular AOP was higher in the UA versus control RCCs all along the follow-up period 

(Figure 2C). This result was expected as UA is a redox active substance that contributes to the 

electrochemical signal. In treated samples, the AOP dropped rapidly during the first 6 days of storage 

and then diminished more progressively. In control units, the AOP was on average 15 % higher in men 

than women and exhibited the same pattern (an increase followed by a decrease), as observed before. 

The morphology of the RBCs treated with UA was slightly better (however not significantly, Figure 3). 

In the 4 RCCs, the percentage of discocytes was higher and for RCC 1, 2 and 4, the percentage of 

echinocytes and spherocytes was lower after 42 days of storage, the differences were less marked 

after 70 days. 
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Figure 3 – Red Blood Cell (RBC) aging markers in Red Cell Concentrates (RCCs) supplemented with Uric Acid (UA). Part 2. 
Morphology analysis with Digital Holographic Microscope (DHM): [A] single-cell morphology analysis with CellProfiler and 
CellProfiler Analyst (CPA), and [B] population analysis with Standard Deviation of Optical Path Difference parameter (SD-OPD). 
[C] Percentage of small cells at day 57 determined with the AMNIS imaging flow cytometer. Mean value ± standard deviation. 

 

At the level of the entire cell population, the Standard Deviation of Optical Path Difference (SD-OPD) 

was lower in UA versus Ctrl RCCs (Figure 3B). This parameter, as shown before, is positively correlated 

to the percentage of spherocytes (refer to ANNEX-3). To note that stomatocytic RBCs, certainly 

contribute positively to the SD-OPD signal because of their round and dense shape. It explains why the 

SD-OPD signal was higher in RCC 4 that counts a high basal level of stomatocytes. Then, these cells 

seemed to be progressively transformed in discocytes in the course of the storage, when looking at 

the individual cell morphology analysis (Figure 3A). 

The percentage of small cells in the sample was not significantly different between the control 

and treated samples at day 57 (Figure 3C). The distribution of the projected surface area on the 

normalized frequency plot (not shown) exhibited the expected bimodal profile which reflects the 

appearance of a subpopulation of small cells during storage. The smaller RBCs were shown to be 

essentially echinocytes, spheroechinocytes and spherocytes73. 
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Figure 4 – Red Blood Cell (RBC) aging markers in Red Cell Concentrates (RCCs) supplemented with Uric Acid (UA). Part 3. [A] 
Microvesicles (MVs) in the RCC supernatant counted by flow cytometry. [B] Percentage of hemolysis in the blood bag 
determined with the Harboe spectrophotometric method. Mean value ± standard deviation. 

 

Finally, the release of MVs and hemolysis were slightly lower (not significantly) in the RBCs treated 

with UA (Figure 4A and 4B). These two parameters are closely correlated as they both reflect 

irreversible lesions. RCC 4 was the least “storable” unit. 

Conclusions 

In conclusion, the addition of UA in the blood bag did not significantly improve or worsen RBC aging 

markers during storage. One reason might be that the antioxidant activity of UA is limited to 

hydrophilic environments74 and that it can become a conditional prooxidant for lipids and membranes 

within the cells75. 

PART 1.2: Supplementation of the red cell concentrates with uric acid and ascorbic acid 

The human plasma contains AA at a concentration comprised between 30 and 110 µM. It was shown 

in plasma, AA had to be present to prevent the prooxidant properties of UA76. In the light of such 

information and knowing that AA concentration is also drastically reduced by plasma dilution in the 

RCCs, it was decided to treat the RBCs with both AA and UA to reach extracellular levels close to the 

physiology. 

Study design 

The RCCs were prepared as follows (Figure 5). 
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Figure 5 – Experimental workflow: preparation of the Red Cell Concentrates (RCCs), supplementation with Ascorbic Acid 
(AA) plus Uric Acid (UA) and follow-up. Split of the four RCCs in two subunits, treatment with 110 µM AA and 420 µM UA. 
The RCCs were followed during 71 days of storage at 4°C. The hematological parameters, pH, Antioxidant Power in the 
supernatant (AOPSN), sensitivity to oxidation, hemolysis, morphology, number of small cells, deformability and intracellular 
metabolite levels were analyzed. 

 

Standard aging markers, i.e. hematological parameters, pH, AOP, hemolysis and morphology were 

analyzed during the storage at 4°C of CPD-SAGM RCCs supplemented with 110 µM of AA and 420 µM 

of UA antioxidants. Again, in order to capture deep storage lesions, the follow-up period was extended 

to 10 weeks (71 days) instead of 6 (official expiration date). In addition to the parameters mentioned 

above, novel tests were added, such as the “Test of Sensitivity to Oxidation” (TSOX) developed to 

characterize the sensitivity of RBCs to oxidative stress and thus indirectly their antioxidant defenses. 

For this follow-up, the percentage of small cells in the sample was also determined at each time-point. 

In addition, a microfluidic device was used to evaluate the RBC rheological properties after 70 days of 

storage53,77. Finally, metabolomic analysis was conducted to evaluate the impact of the treatment on 

the RBC metabolism. 

Material and methods 

Four RCCs donated exclusively by male donors (Table 2) were selected for this experiment. 
 

Table 2 – Donor’s characteristics. Sex, age and blood group (ABO and Rhesus D) of the donor. 

Sample Sex Age / year Blood group 
RCC 1  Male 52 A + 
RCC 2 Male 54 A + 
RCC 3 Male 27 B + 
RCC 4 Male 61 A + 

   RCC: Red Cell Concentrate. 
 

The whole blood was processed at day 0 and the antioxidants were added at day 1. Ideally, the 

separation and treatment should have been performed the same day to avoid early release of UA that 

probably results from the resuspension of the RBCs in a non-physiological environment (not 100 % 

plasma). Unfortunately, it was not possible because of logistic reasons. 
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After being split in two subunits in sealed conventional bags, the RCCs were supplemented with 2 mL 

of AA-UA stock solution (26x). The stock solution (2.95 mM AA and 10.83 mM UA) was prepared in 0.9 

% NaCl and was supplemented with 36.9 µM NH3 to help the dissolution of UA. The same amount of 

NH3 was added in the control. As we assumed an extracellular volume of 50 mL SAGM, the final 

concentrations of AA and UA were thus theoretically of 110 µM AA and 420 µM UA respectively, which 

corresponds to the maximum of the UA concentration in plasma. 

Follow-up during storage 

The RCCs were sampled at day 1, 2, 8, 15, 22, 29, 36, 43, 50 and 71 of storage. The bags stored at 4°C 

were gently mixed, and 4.2 mL were collected with a syringe through a sampling site. A 1-mL sample 

was immediately put aside and shipped at 4°C to Paris (France) for the analysis of small cell (AMNIS 

imaging flow cytometry). Another 1 mL was used for the test of RBC sensitivity to oxidation. At day 70, 

1 mL was also withdrawn to test a microfluidic device developed to assess RBC deformability (MVA 

system). 

Sysmex analysis and pH measurement were performed on the whole RCC. The remaining 2 mL 

were centrifuged at 2000 g for 10 min at 4°C. The supernatant was kept for the quantification of the 

extracellular AOP (Edel) as well as for determination of the percentage of hemolysis (Harboe 

spectrophotometric method). The RBCs were further washed twice in 0.9 % NaCl. Aliquots of dry RBC 

pellet (HCT 0.821 ± 0.03) were snap-frozen in liquid Nitrogen (N2) for metabolomics analysis. Some 

RBCs were also resuspended in two volumes of HEPA for morphology analysis by DHM. 

Test red blood cell sensitivity to oxidation: “TSOX” 

The TSOX is described more globally and with more details in Chapter 4. For this particular application, 

the RBCs were first washed by adding 14 mL of 0.9 % NaCl to the 1 mL RCC sample and centrifuging it 

during 10 min at 2000 g and 4°C. Then, the pelleted RBCs were resuspended at 10 % HCT in 0.9 % NaCl 

(1.8 mL final) and treated with 9 µL of 10 mM 2ʹ,7ʹ-Dichlorofluorescin diacetate (DCFH-DA, Sigma-

Aldrich) in 100 % DMSO (50 µM DCFH-DA and 0.5 % DMSO final). This dye is incorporated in the cells 

where it is de-esterified by the cytosolic esterases78. The DCFH molecule becomes fluorescent (Ex/Em 

485/520 nm) upon oxidation by Reactive Oxygen Species (ROS). The RBCs were incubated 30 min at 

37°C under agitation to enable the reporter probe incorporation within the cells. After this, the 

samples were centrifuged (as before) and the supernatant containing the excess of DCFH-DA was 

discarded. Finally, the RBCs were resuspended at 1 % HCT in 0.9 % NaCl, treated with 0, 0.001, 0.0025, 

0.005 and 0.01 % hydrogen peroxide (H2O2) to generate oxidative stress. After 10 min at RT, the 

emitted fluorescence was quantified by flow cytometry (laser excitation at 488 nm and emission 

detection at FL1 533/30 nm, BD FACSVia and BD FACSVia Research Software, BD Biosciences). For the 
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analysis, the fluorescence emitted at different oxidant concentrations was reported and the Area 

Under the Curve (AUC, with a baseline corresponding to the value of fluorescence at 0 % H2O2) was 

calculated using PRISM software. 

Red blood cell deformability analysis (MVA) 

The experimental protocol was based on the papers of Burns et al.53,77. Shortly, the RCC samples were 

resuspended at HCT of 40 ± 0.5 % in 1x Phosphate Buffered Saline (PBS) and stored on ice (for 

maximum 1 h). Right before the analysis, 25 µL of the control and AA-UA samples were loaded, 

respectively, in the left and right inlets of a microfluidic device placed under an inverted brightfield 

microscope (IT415PH – 630-2729, VWR) equipped with a 20x objective (Plan-achromatic IOS LWD 

20XPh, N.A. 0.40, W.D. 7.66 mm) and a CMOS camera (Flea3 1.3 MP Mono USB3 Vision [VITA 1300], 

Point Grey Research). To drive the RBCs throughout the microchannels network of the chip, the outlet 

was connected to a 20-cm water column to establish a differential pressure. The RBC deformability 

was evaluated by looking at the average flow rate Q (nL/s) below the microchannel network. Each 

sample was analyzed in duplicate. 

Metabolomics 

A panel of intracellular metabolites was quantified in treated and control RBCs, stored for 2, 8, 15, 29 

and 43 days, that were put aside during the follow-up and frozen until analysis. 

The extraction of the intracellular RBC metabolites consisted in three successive extraction 

steps. For the first one, three volumes (450 µL) of cold methanol (-28°C) were added on the frozen 

pellets of washed packed RBCs (150 µL). The tubes were carefully vortexed during at least 1 min 

because the precipitated proteins have tendency to form dense aggregates difficult to homogenize. 

The samples were kept 5 min on ice before being sonicated in an ice bath during 10 min. The vortex 

and sonication steps were repeated twice. The tubes were then centrifuged during 15 min at 4°C and 

21’000 g. The supernatant was transferred into another tube and kept on ice, and the bottom part 

which formed a solid aggregate was further processed. For the second extraction step, 1.5 volume 

(225 µL) of 50 % cold methanol (-28°C) was added on the aggregate, the sample was vortexed and 

sonicated once, and centrifuged, as before. The supernatant was added to the one obtained from the 

first round of extraction. Finally, for the third and last step, 1.5 volume (225 µL) of cold dH2O (4°C) was 

added on the aggregate and the sample was processed as step 2. The combined supernatants for the 

three successive extraction steps were stored at -80°C prior to analysis. In total, the initial sample was 

diluted seven times. 
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The targeted metabolomics of the intracellular metabolites (amino acids, nucleotides, sugar 

phosphates and organic acids) was conducted at the Canada Research Chair in Applied Metabolic 

Engineering (Ecole Polytechnique de Montréal, Montréal, Québec) by Jingkui Chen and Professor 

Mario Jolicoeur. The frozen extracted samples were shipped by plane in dry ice. Before the analysis, 

the extracts were filtered through 0.2 µm filters. The quantification was done according to the method 

described in the paper from Ghorbaniaghdam et al.79. Shortly, the metabolites were separated by Ultra 

Performance Liquid Chromatography (UPLC) and analyzed by Mass Spectrometry (MS/MS). To achieve 

accurate and sensitive quantification, the Multiple Reaction Monitoring (MRM) approach was applied. 

The resulting AUC (elution time versus MRM signal) was calculated and compared to calibrations 

curves obtained with commercial standards for each series of analysis. 

Results and discussion 

The hematological parameters evolved similarly for both subunits (Ctrl and AA-UA, Figure 6A). For the 

four RCCs, the number of RBCs remained stable during the whole storage, the Mean Corpuscular 

Volume (MCV) increased linearly and the anisocytosis became more pronounced with cell aging. 

The mean pH for the four RCCs before the split was of 7.39 ± 0.05 and increased to 7.47 ± 0.04 

for the control and to 7.50 ± 0.06 for the AA-UA units after the split and treatment. The pH became 

gradually more acidic during storage as a results of lactate accumulation in the supernatant (Figure 

6B). The pH reached 6.78 ± 0.06 versus 6.77 ± 0.06, and 6.46 ± 0.04 versus 6.42 ± 0.06 for the control 

versus AA-UA at day 43, and 71, respectively. 

As expected, the AOP was much higher in the units treated with the antioxidants (i.e. 106.9 ± 

19.5 nW in Ctrl versus 328.4 ± 17.3 nW in AA-UA at day 2, Figure 6C). Indeed, both UA and AA are 

hydrosolubles antioxidants that positively contribute to the redox potential of the sample. The AOP 

followed the expected trend in the control RCCs, i.e. an increase during the first week of storage 

followed by a decrease and a plateau. The reduction of the AOP signal in the treated units could results 

from: 1) the degradation, 2) the extracellular oxidation or 3) the uptake and consumption of the added 

antioxidants by the RBCs. Interestingly, the drop of AOP was more rapid in the first part of the storage. 

The slope of the linear regression curve was -7.87 nW/day (R2 = 0.99) between days 2 and 22, and -

1.07 nW/day (R2 = 0.91) between days 22 and 71. Until the end of the follow-up, the AOP remained 

significantly higher in the treated units. The mean AOP in the four control versus AA-UA was 85.2 ± 

20.1 versus 158.9 ± 17.4 nW at day 43 and 83.0 ± 8.2 versus 128.0 ± 13.0 nW at day 71, respectively. 
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Figure 6 – Red Blood Cell (RBCs) aging markers in Red Cell Concentrates (RCCs) supplemented with Ascorbic Acid (AA) and 
Uric Acid (UA). Part 1. [A] Hematological data: RBC count, Mean Corpuscular Volume (MCV) and Standard Deviation of 
Distribution Width (SD-RDW) measured with Sysmex analyzer. [B] Evolution of the pH in the RCCs. [C] Antioxidant Power (AOP) 
in supernatant quantified by pseudotitration voltammetry with EdelMeter. [D] Test of RBC sensitivity to oxidation (“TSOX”) 
under hydrogen peroxide (H2O2) treatment, reported with the 2ʹ,7ʹ-Dichlorofluorescin diacetate (DCFH-DA) fluorescent dye. 
The higher the Area Under the Curve (AUC), the most intracellular Reactive Oxygen Species (ROS) generated. [E] Percentage 
of hemolysis in the blood bag determined using the Harboe spectrophotometric method. Mean value ± standard deviation. 

 

Surprisingly and despite the addition of exogenous antioxidants, the sensitivity to oxidative stress was 

not statistically different between control and AA-UA RBCs (Figure 6D). In both cases, the amount of 

intracellular ROS generated under H2O2 treatment increased significantly with storage time. The RBC 

antioxidant defenses were stronger during the first 15 days and the sensitivity to oxidative stress 

clearly increased at the beginning of the third week of storage (day 22). These results are in accordance 

with the observation made by D’Alessandro et al. who reported an accumulation of ROS during the 

first 3 weeks of storage in SAGM80. After this, the control and AA-UA RBCs became 2.5 and 2.3 (at day 

43) and 3.7 and 3.4 (at day 71) times more sensitive to oxidation in comparison to day 2. 
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It seems that the addition of AA and UA antioxidants did globally not improve nor worsen RBC storage 

lesions. This observation was confirmed when looking at the percentage of hemolysis (Figure 6E). In 

the four RCCs, the cell lysis increased linearly up to day 36 and then followed an exponential trend. At 

day 43, the mean hemolysis was 0.345 ± 0.089 % for the control and 0.360 ± 0.065 % for the AA-UA 

units, below the accepted 0.8 %. At day 71, it reached 1.198 ± 0.819 % and 1.270 ± 0.903 % in the 

control and AA-UA RCCs. 
 

 
Figure 7 – Red Blood Cell (RBCs) aging markers in Red Cell Concentrates (RCCs) supplemented with Ascorbic Acid (AA) and 
Uric Acid (UA). Part 2. Morphology analysis with Digital Holographic Microscope (DHM): [A, top] population analysis with 
Standard Deviation of Optical Path Difference parameter (SD-OPD), and [A, bottom] single-cell morphology analysis with 
CellProfiler and CellProfiler Analyst (CPA). [B] Percentage of small cells determined with the AMNIS imaging flow cytometer. 
[C] Deformability at day 70 assessed with the MVA system. Mean value ± standard deviation. 

 

Similarly to other aging markers, the rheological properties of the RBCs were not radically improved 

by the antioxidant treatment. In all RCCs, the integrity of the cell shape was maintained during at least 

four weeks with a low SD-OPD (Figure 7A, top), a low percentage of spherocytes (Figure 7A, bottom) 

and few small cells (Figure 7B). At day 43, the treated samples had a slightly better morphology 

compared to control, i.e. 71.8 ± 5.2 % versus 66.4 ± 6.5 % of discocytes, 17.0 ± 2.4 % versus 22.3 ± 2.7 

% of echinocytes and 3.0 ± 3.6 % versus 3.4 ± 4.2 % of spherocytes.  

This tendency was confirmed when looking at the mean percentage of small cells that reached 

17.6 ± 9.1 % in the AA-UA versus 19.1 ± 9.5 % in the control RCCs. Finally, the perfusion rate through 

the artificial microvascular network53,77, that reflects the rheological properties of the RBCs was 

measured. The deformability of the cells was similar in both conditions at day 70 (Figure 7C). 
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Metabolism under uric acid and ascorbic acid supplementation 

Although no macroscopic effects of UA and AA supplementation were observed, the results of the 

metabolomics analysis indicated that the RBC metabolism was in fact impacted. Indeed, the level of a 

certain number of intracellular metabolites (refer to ANNEX-8), i.e. Adenosine Monophosphate (AMP), 

Nicotinamide Adenine Dinucleotide (NAD), glucose 6-phosphate, malate, methionine, serine, 

glutamine, glycine, ribulose 5-phosphate & xylose 5-phosphate, ribose 5-phosphate, phenylalanine 

and threonine was significantly modified under treatment (at least for one time point). ATP and 

pyruvate concentrations were also different whereas not statistically. Finally, the intracellular UA was 

depleted within eight days of storage in control RBCs (as reported in Chapter 2), but was, as expected, 

maintained in the treated cells. 

The evolution of the level of the different metabolites, as well as the fact that divergent 

behaviors were observed from the very beginning of the storage suggested that the treatment helped 

the RBCs to better support the perturbation triggered by the RCC preparation and storage. 

Indeed, the evolution of the metabolism in the control RBCs seems to indicate that because 

UA is a metabolic end-product, its rapid depletion would pull the reactions toward the oxidative 

Pentose Phosphate Pathway (PPP) and then in the direction of the purine pathway as a compensatory 

mechanism (Figure 8, red path). Such behavior could explain why lower levels of ribose 5-phosphate 

and higher levels of AMP and glutamine were observed in the control samples. 
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Figure 8 – Effect of Ascorbic Acid (AA) and Uric Acid (UA) supplementation on Red Blood Cell (RBC) metabolism. Part 1. 
Oxidative and non-oxidative Pentose Phosphate Pathway (PPP), and purine and GMP metabolism in control vs AA-UA samples. 
Time-course metabolomics analysis of several intracellular RBC metabolites. In the control RBCs, the metabolism is pulled in 
the direction (red path) of non-oxidative PPP and toward the purine and GMP metabolism, probably as a result of the depletion 
of intracellular UA pool. 

 

The difference of NAD concentration could also come from this metabolic rerouting, if we assume that 

the RBCs contain the Xanthine Oxidase (XO) enzyme (which has not yet been reported). Indeed, the 

XO catalyzes the following reactions (Reactions 1 and 2). 
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"#$%&'()ℎ+(, + ./01 + "23 + 32 ⇄ 5'()ℎ+(, + ./0" + H232  Reaction 1 

5'()ℎ+(, + ./01 + "23 + 32 ⇄ 78'), + ./0" + "232   Reaction 2 
 

Because each of these reactions releases ROS (i.e. H2O2), urate depletion could itself further participate 

to the build-up of oxidative stress that was reported during the RCC storage. 
 

 
Figure 9 – Effect of Ascorbic Acid (AA) and Uric Acid (UA) supplementation on Red Blood Cell (RBC) metabolism. Part 2. S-
Adenosylmethionine cycle (SAM), and reduced Glutathione (GSH) synthesis and oxidized Glutathione (GSSG) reduction 
pathways in control vs AA-UA samples. Time-course metabolomics analysis of several intracellular RBC metabolites. In the 
treated RBCs, GSH synthesis is favored (green path). 

 

The data also indicate that the treatment favored the de novo synthesis of reduced glutathione (GSH, 

Figure 9, green path). It is suggested by the lower levels of methionine, serine, as well as GSH 

precursors glutamine and glycine in the AA-UA samples. As such, methionine could be consumed by 

the S-Adenosylmethionine (SAM) cycle to produce the homocysteine metabolite. The latter then 

reacts with the serine to produce cysteine. The reduced concentration of glutamine and glycine tends 

to corroborate this hypothesis, as well as the increased consumption of pyruvate by the urea cycle and 

remnant of the Tricarboxylic Acid cycle (TCA or Krebs cycle) to produce more glutamate, a glutathione 

precursor. Unfortunately, the GSH concentration was not measured. 
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Figure 10 – Effect of Ascorbic Acid (AA) and Uric Acid (UA) supplementation on Red Blood Cell (RBC) metabolism. Part 3. 
Urea cycle and remnants of the tricarboxylic acid cycle (TCA or Krebs cycle) in control vs AA-UA samples. Time-course 
metabolomics analysis of several intracellular RBC metabolites. In the treated RBCs the glycolysis is favored (green path). 
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A more active GSH synthesis in treated RBCs could be explained by the fact that these cells maintain a 

higher energy level. Indeed, preventing the switch toward the non-oxidative PPP and purine 

metabolism, would leave the glycolytic intermediates available for ATP (and 2,3-DPG) generation by 

the glycolysis (Figure 10, green path). Moreover, the reduction of the oxidative stress by the 

antioxidant supplementation could also limit the metabolism rerouting triggered by the RBC salvage 

mechanisms, e.g. the shift toward the non-oxidative PPP that produces reduced Nicotinamide Adenine 

Dinucleotide Phosphate (NADPH). Such phenomena was shown to occur in the second metabolic phase 

as consequence of the oxidation of the redox sensitive amino acids in the active site pocket of the 

Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) enzyme81. Finally, higher levels of 2,3-DPG 

could also limit rerouting toward the PPP as it would help the cells to maintain a lower oxygenation 

state. 

Conclusions 

In a general way, the AA-UA treatment seemed to have positively impacted the RBC metabolism, i.e. 

it helped to maintain a more active glycolysis and therefore sustained key cellular functions such as 

the GSH synthesis. A combination of two mechanisms probably explains these effects, the first one 

being that the addition of UA at physiological levels prevents or at least limits the export of intracellular 

UA and the consequent metabolic dysregulation, and the second that addition of antioxidants 

prevented, at least partially, the metabolic rerouting triggered by the accumulation of oxidative stress. 

AA-UA addition also reduced slightly the sensitivity of the RBCs to oxidation, as shown by the TSOX 

assays. Unfortunately, not enough to prevent efficiently the changes of morphology, deformability and 

ultimately the hemolysis of the RBCs. 

Independently of the effect of the treatment and as generally observed, all RCCs did not 

behave exactly the same way. It highlights the donor-dependent capacity for storage (“storability”). In 

this study, the RBCs contained in RCC 1 aged the best, i.e. limited anisocytosis, lower number of MVs 

released, best morphology and deformability and lower hemolysis. Those in RCC 4 exhibited an 

increased susceptibility to storage lesions. It confirms that the loss of membrane by microvesiculation 

reduces the surface to area ratio rendering the cells less deformable. These RBCs are probably rapidly 

cleared from the transfusion recipient circulation. Indeed, RBCs with more than 18 % average area loss 

(i.e. 27 % of area-to-volume ratio) were shown to be sequestered by human spleen in an ex vivo 

setting82. 
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PART 2: SUPPLEMENTATION OF THE RED CELL CONCENTRATES WITH 

PROTECTIVE MOLECULES 

Aim of the study 

In the following study, the impact of the supplementation of the RCCs with several compounds having 

potential direct or indirect antioxidant actions during storage will be evaluated. Indeed, a higher load 

of antioxidant defenses could help the RBCs to deal with oxidative stress during storage. The molecules 

that will be added in the blood bags have all been reported to have antioxidant activities ( 

 

Table 3) and have been tested as potential therapeutic agents in Sickle Cell Disease (SCD), a pathology 

associated with an increased production of pro-oxidants species83. 
 

Table 3 – Properties and antioxidant activities of the tested compounds. 

Compound Properties and antioxidant activities 
Ascorbic acid (AA, vitamin C) Reducing agent against ROS, recycling of other antioxidants (e.g. vitamin E).84 
N-Acetylcysteine (NAC) Increased intracellular thiols (GSH precursor), direct antioxidant action.85 
Glutamine Preservation of intracellular NAD(P)H levels, glutathione precursor.86 
Hydroxyurea (HU) Antiradical activity and amine oxidase inhibition. Conversion of HU to NO that 

stimulates HbF synthesis.87,88 
9-lipoic acid Lipo- and hydrosoluble, and antioxidant properties in both its reduced 

(dihydrolipoic acid) and oxidized (lipoic acid) forms. Reacts with the ROS, 
interacts with vitamin C, E and GSH, and metal-chelator.89–91 

Acetyl-L-carnitine Decrease lipid peroxidation, ROS scavenger and metal-chelator.92 
9-tocopherol (vitamin E) Vitamin E isoform with the highest bioavailability. Lipophilic antioxidant. 

Peroxyl radical scavenger, decrease lipid peroxidation. Synergistic interaction 
with ascorbic acid.93,94 

ROS: Reactive Oxygen Species, GSH: reduced Glutathione, NADH: reduced Nicotinamide Adenine Dinucleotide (Phosphate), 
NO: Nitric Oxide, HbF: Fetal Hemoglobin. 
 
The antioxidant action of the selected compounds is either direct or indirect. Indeed, some of these 

molecules are precursors for antioxidants or promote their recycling, and thus promote indirectly the 

cellular defenses, whether others are direct scavengers or reducing agents for oxidative species. The 

protective effect of the same molecules in the framework of RBC storage, in in vitro experiments or 

even in in vivo trials is described in Table 4.  
 

Table 4 – State of the art for the protective effect of the tested compounds. Improvements observed under treatment with 
the different compounds. Experimental conditions are specified in brackets. 

Compound Protective effect in Red Blood Cells 
Ascorbic acid 
(AA, vitamin C) 

Higher antioxidant status, reduced osmotic fragility and increased membrane integrity 
(RCC in SAGM, 3 mM AA)95. 
Reduced membrane fragility and hemolysis (RCC in AS-5, 5.86 and 8.78 mM AA)96. 
Maintenance of 2,3-DPG levels (RCC in CPD-adenine, 0.5 mM AA)97. 
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Decreased MV formation and improved 24-hour posttransfusion recovery (stored murine 
RBCs, 3.6-10.8 mM AA)98. 

 
N-acetyl cysteine 
(NAC) 

Maintenance of GSH levels and scavenger capacity against H2O2 and amelioration of cell 
lysis (RCC in SAGM, 5 and 20-25 mM NAC)99. 
Replenishment of the intracellular reductive reservoir (RBC exposed to oxidant agents in 
vitro, 5 mM NAC)100. 
Increase GSH blood levels, and decreased PS exposure, plasma levels of advanced glycation 
end-products (AGEs) and cell free-Hb (SCD patients, 2.4 mg NAC during 6 weeks)101. 

Both Decreased energy metabolic fluxes (glycolysis and PPP), promotion of glutathione 
homeostasis, and less hemolysis, MDA and oxidation by-products (RCC, SAGM, 0.23 mM 
AA plus 0.5 mM NAC)102. 

Glutamine Antisickling property (RBCs in vitro, 3.8 mM glutamine)103. 
Maintain ATP, lipid content and phospholipid asymmetry, and decreased vesiculation and 
hemolysis (RCC in Adsol, 10 mM glutamine plus 20 mM phosphate)104. 

Hydroxyurea 
(HU) 

Significant increase in antioxidant enzymes at RBC membrane and increase in tyrosine-
phosphorylation of catalase (RBC in vitro, 50 µM HU)105. 
Higher values of GSH and Trolox Equivalent Antioxidant Capacity (TEAC), and lower lipid 
peroxidation (Sickle Cell Anemia [SCA] patients)106,107. 

9-lipoic acid Reduction of MDA, increase of 2.3-DPG and elevation of glycolytic activity (RCC in SAGM, 
100 µM)108. 
Protection against the oxidative damages induced by gamma irradiation (Gy), maintenance 
of rheological, mechanical properties and permeability of the erythrocytes (RBC exposed 
to 25 Gy in vitro, 123 µM 9-lipoic acid)109. 

Acetyl-L-
carnitine 

Retards osmotic cell swelling linked to calcium and potassium imbalance (RCC in SAGM, 5 
mM L-carnitine)110. 
Scavenging of ROS, first line of defense during storage (rat RBCs, whole blood in CPDA-1, 
10/30/60 mM L-carnitine)111. 
Decreased plasma MDA and increase of antioxidant enzymes (catalase, SOD and GPx) 
activity in RBCs (Coronary Artery Disease [CAD] patients, 1000 mg/d L-carnitine during 12 
weeks)112. 

Both 9-lipoic acid reverses oxidative stress arising from iron overload, action further enhanced 
in combination with L-carnitine (iron-overloaded human fibroblasts, 5/25/125 µM 9-lipoic 
acid plus L-carnitine)113. 

9-tocopherol 
(vitamin E) 

Inhibition of oxidative damages induced by glucose (hemolysis, restoration of catalase, 
SOD and GSH levels), decreased levels of Thiobarbituric Acid Reactive Substances (TBARS) 
(RBCs incubated with 5/10/20 mM glucose, 18 µg/mL vit. E)114. 
Reduced levels of TBARS, improved morphology, prevention of hemolysis (rat RBCs treated 
with acetone in vitro, 200 mg/kg 9-tocopherol per day i.m.)115.  
Decreased percentage of irreversibly sickled RBCs (SCD patients, 450 IU 9-tocopherol per 
day for 6 to 35 weeks)116. 
Decrease of ROS production (RCC in SAGM, vitamin E nanoemulsion)117. 

RCC: Red Cell Concentrate, SAGM: Saline-Adenine-Glucose-Mannitol, AS: Additive solution, 2,3-DPG: 2,3-Diphosphoglycerate, 
CPD: Citrate-Phosphate-Dextrose, MV: Microvesicle, RBC: Red Blood Cell, GSH: reduced Glutathione, H2O2: hydrogen 
peroxide, Hb: Hemoglobin, PS: Phosphatidylserine, SCD: Sickle Cell Disease, MDA: Malondialdehyde, ATP: Adenosine 
Triphosphate, CPDA: Citrate-Phospate-Dextrose-Adenine, SOD: Superoxide Dismutase, GPx: Glutathione Peroxidase. 
 

In the following study, RBCs were treated with the above compounds and the evolution of several 

aging markers were followed for 71 days. 

Material and methods 

Addition of protective molecules in the red blood cell concentrates 
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The modified additive solutions were kindly prepared in the Pharmaceutical Development department 

of B. Braun (Crissier, Switzerland) under aseptic conditions (composition and preparation are described 

in ANNEX-9). The compounds of interest were dissolved in SAGM and nitrogen was bubbled in the 

bottles to protect the molecules from oxidation. The stock solutions were 28.5 times concentrated and 

were frozen until use. 
 

 
Figure 11 – Experimental workflow: pool-and-split of the Red Cell Concentrates (RCCs), supplementation with protective 
molecules and follow-up. [A] Connection of six RCCs to one big transfer bag, [B] pool and [C] split in six units, treatment with 
the protective molecules, and follow-up during 71 days of storage at 4°C. The hematological parameters, global Antioxidant 
Power (AOP), morphology, microvesicle count (MVs) and hemolysis were analyzed. 

 

Six RCCs coming from six men, all B Rhesus-D positive and aged of 37, 39, 39, 40, 49 and 67 years at 

the time of the donation were pooled in a large transfer bag (3.5 L, Macopharma) and split in six 

pouches. The pooled RCCs having a volume of 275 ± 75 mL were treated with 10 mL of antioxidant 

solution or SAGM for the control (Figure 11). 

Follow-up during storage 

The RCCs stored at 4°C were analyzed at day 1, 4, 8, 11, 14, 22, 29, 36, 43, 50, 57, 64 and 71 of storage. 

Each time, the blood bags were gently mixed to homogenize their content and 3 mL of RCCs were 

withdrawn. Sysmex, AOP and MV count analyses were done on the whole RCC. Then, the samples were 

centrifuged at 2000 g and 4°C for 10 min. The supernatants were used for measurement of the 

hemolysis percentage. After that, the RBCs were washed twice in 0.9 % NaCl (centrifugation as before). 

Finally, the RBC pellets were resuspended in two volumes of HEPA and used for morphology analysis 

with DHM. For more details about the methods, please refer to the “material and methods” section of 

Chapter 1, Part 1. 

Results and discussion 

Among the five conditions tested, RCC 5 and RCC 6 exhibited significant differences with the control. 

In RCC 5, supplementation of 9-lipoic acid and acetyl-L-carnitine reduced the release of MVs and 

delayed RBC lysis (Figure 12E and F), but did not seem to prevent spherocytosis (Figure 12C and D). In 

ANALYSESSTORAGE

C

TREATMENT POOL-AND-SPLIT
A

B

C

Control

Ascorbic acid 0.23 mM
N-acetyl cysteine 0.5 mM

Glutamine 3 mM

Hydroxyurea 0.05 mM

!-lipoic acid 0.1 mM
Acetyl-L-carniAne 5 mM 

!-tocopherol 0.042 mM

71 days
4°C
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RCC 3

RCC 4

RCC 5

RCC 6
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Morphology with DHM
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Hemolysis

6 CPD-SAGM RCCs
Pool-and-split at Day 1

Day 1

Day 1, 4, 8, 11, 14, 22, 29,
36, 43, 50, 57, 64 and 71 
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RCC 6, addition of 9-tocopherol was deleterious rather than protective. Indeed, this molecule induced 

a rapid drop of the discocyte population that transformed into stomatocytes and spherocytes, along 

with microvesiculation and hemolysis (Figure 12C-F). This “unexpected role” has already been 

described in a study that demonstrated 9-tocopherol-mediated peroxidation in the RBCs treated with 

low concentrations of 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) oxidant118. Interestingly, 

the only noticeable effect of AA (RCC 2) was an increase of the global AOP level. Reason for this could 

be that in RBCs, the vitamin C is mainly taken up in its oxidized form (Dehydroascorbic Acid [DHA]) via 

GLUT1 (solute carrier family 2, facilitated glucose transporter member 1). To enter the cell via this 

transporter, abundantly expressed in the erythrocyte membrane, DHA enters in competition with 

glucose. Once in the cytoplasm, DHA can exert a pro-oxidant effect because its reduction requires 

expansion of endogenous GSH119. Addition of AA could thus only protect the RBCs from surrounding 

oxidative attacks rather than provide efficient intracellular defenses. 
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Figure 12 – Red Blood Cell (RBC) aging markers in Red Cell Concentrates (RCCs) supplemented with the different compounds. 
[A] Hematological data: RBC count, Mean Corpuscular Volume (MCV) and Standard Deviation of Distribution Width (SD-RDW) 
measured. [B] Antioxidant Power (AOP) quantified by pseudotitration voltammetry with EdelMeter. Morphology analysis 
using Digital Holographic Microscopy (DHM): [C] population analysis with Standard Deviation of Optical Path Difference 
parameter (SD-OPD), and [D] single-cell morphology analysis with CellProfiler and CellProfiler Analyst (CPA). [E] Microvesicles 
(MVs) in the supernatant counted by flow cytometry. [F] Percentage of hemolysis in the blood bag determined with the Harboe 
spectrophotometric method. Mean value ± standard deviation. 
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Conclusions 

Globally, the results of this preliminary study were surprising (see Figure 12). Indeed, all the RCCs 

including the control, with the exception of the one supplemented with α-tocopherol, aged better 

compared to previous studies when looking at parameters such as the MCV, anisocytosis (reflected by 

the standard deviation of the RBC distribution width [SD-RDW] parameter), number of MVs, 

percentage of hemolysis or morphology (population and single-cell). Therefore, it was even more 

difficult to assess with confidence the beneficial impact of the different treatments. We suspect the 

pool-and-split to be the reason of these unexpected results. One hypothesis is that one (or more) 

donor is a “super-storer”, i.e. who possesses some characteristics that helps to the storability of the 

RBCs (for example a higher plasmatic UA concentration69). This advantage could be “shared” during 

the pool-and-split. It would also explain why the increase of AOP during the first week of storage 

(mostly due to the equilibration of UA concentration between the intra- and extra-cellular space) was 

not observed. To avoid such bias, each solution formulation such be test on several individual RCCs (at 

least 3). 

In summary, the pool-and-split enabled to reduce the unit-to-unit variability and could 

therefore be useful when multiple conditions need to be compared. However, we observed in this 

study that some individual donor’s characteristics can impact the aging of the entire RBC population 

and thus potentially distort the results of the experiments. 
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GENERAL CONCLUSIONS 

Oxidative stress results from the imbalance between the production of oxidants and the antioxidative 

system. Three measures can be taken to reduce such burden, i.e. reduce the O2 levels, sustain the 

cellular antioxidant protective system, or directly provide antioxidant molecules. To be beneficial, a 

protective molecule should fulfill different criteria such as being specific, the product of its reaction 

with the oxidant should not be armful, and its half-life should be long enough to let the molecule 

produce its effect120. In addition, when thinking about ways to sustain indirectly the cellular antioxidant 

system, one should keep in mind that favorizing one metabolic pathway could destabilize the entire 

cellular machinery and result in the exhaustion of key metabolites or in the accumulation of unwanted 

waste products. 

Even in the case of a major breakthrough, the feasibility, the risk versus benefit and finally the 

cost versus benefit (maybe less for us researchers) need to be evaluated before modifying routine 

procedures that are generally well established. For us, the feasibility of adding a protective molecule 

in the blood bags will mainly depend on its stability. Indeed, a molecule sensitive to light, and/or to O2, 

and/or to temperature, and/or degrading over time will determine the manufacturing process, the 

packaging and the storage of the blood collection set. Cold storage, for example, requires complex 

storage infrastructure and could thus limit its use (e.g. in countries with limited access to electricity). 

In the health field, every action should result in more good than harm for the patient. Careful 

evaluation of the possible side effects of the added molecules, first at the level of the RBCs in the blood 

bags and then once transfused in the patient is necessary. One example is the HU addition tested in 

the last part of this chapter. Indeed, despite its potential protective properties, it is a molecule not 

naturally found in living organisms that is used for the treatment of sickle cell disease and for 

chemotherapy in hemato-oncology. Similarly, external supply of UA could be deleterious for patients 

with gout. The final criteria to be evaluated is the cost of antioxidant supplementation. Weighting the 

utility of a medical intervention is generally calculated in terms of QALY (Quality-Adjusted Life Year), 

that provides an economical value of one year in good health121. 

Unfortunately, none of the strategies developed in this chapter resulted in a major 

improvement of the stored RBC quality, although all the tested compounds were shown to have 

antioxidant and/or protective properties in other contexts (disease, in vitro experiments, etc.). For 

some of these compounds, we could wonder if the absence of conclusive results is not simply due to 

the experimental conditions, e.g. the concentrations tested, or if the aging markers targeted by our 

panels of tests are the most pertinent. In the future, we should surely test different concentrations for 

each molecule and probably update the choice of the tested compounds. It is the reason why efforts 

were put for the development of the TSOX assay, that will be presented in the Chapter 4. 
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DEVELOPMENT OF THE TSOX ASSAY, I.E. TEST OF SENSITIVITY TO 

OXIDATION 
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INTRODUCTION 

An antioxidant is by definition a molecule, protein or enzyme that counteracts oxidation. In living 

organisms like humans, such protection can: 1) be provided by enzymes (e.g. the catalase, Glutathione 

Peroxidase [GPx] and Reductase [GR], Superoxide Dismutase [SOD]), 2) by chain breaking antioxidants 

that directly scavenge free radicals by receiving or donating an electron (e.g. the liposoluble 

tocopherols, ubiquinol, carotenoids and flavonoids, or the hydrosoluble Ascorbic Acid [AA], Uric Acid 

[UA] and thiols), and finally 3) by metal binding proteins (i.e. transferrin, ferritin and lactoferrin) that 

scavenge Fe2+ and Cu+ transitions metals and thus prevent the formation of the highly reactive hydroxyl 

radical (OH•) via the Fenton reaction1. 

In Chapter 3, the protective effect of different molecules was assessed in the context of Red 

Blood Cell (RBC) storage. First, Red Cell Concentrates (RCCs) were supplemented with UA with the aim 

to restore its normal plasmatic concentration and therefore prevent the loss of Antioxidant Power 

(AOP) and metabolic dysregulation subsequent to blood products preparation (see Chapter 2). As a 

corrective action, RCCs were supplemented with plasma levels of UA, i.e. 380 µM and 320 µM UA in 

RCCs donated by men and women, respectively (Chapter 3, Part 1.1). Because no benefices were 

noticed, a second experiment was conducted where AA was supplemented in addition of UA in order 

to reduce its pro-oxidant effect. To do so, 420 µM UA and 110 µM AA were added in four RCCs donated 

by men (Chapter 3, Part 1.2). Despite the variations in metabolism, such treatment neither positively 

impacted the RBCs. Finally, the blood bags were treated with five different combinations of protective 

molecules. Each compound was tested at a given concentration (230 µM AA and 500 µM N-

Acetylcysteine [NAC]; 3 mM glutamine; 50 µM Hydroxyurea [HU]; 100 µM a-lipoic acid and 5 mM 

acetyl-L-carnitine; and 42 µM a-tocopherol), selected on the basis of the literature (Chapter 3, Part 2). 

Against all odds, none of the conditions tested resulted in improvement of the standard aging 

parameters, even for the compounds known as potent antioxidants (such as AA). Such results triggered 

the following reflection: 1) “are these compounds indeed protective against oxidative stress 

accumulation?”, 2) “are they efficient in RBCs in such context?” and 3) “were the tested concentrations 

high enough?”. 

Despite the limited impacts of molecules added, chemical supplementation is an option that 

deserves to be taken into account and investigated because this approach is probably the most 

straightforward and cheapest manner to improve the RCC quality. Indeed, adjustment of the additive 

solution composition does not require to modify the design of the blood collection kits, the way of 

processing the blood or the storage conditions of the labile blood products. The production lines and 

supply chain in the transfusion centers should thus not be affected by such strategy. 
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Therefore, to provide a tool to answer such questions, a test of sensitivity against oxidative stress, 

named TSOX has been developed. It is intended to help to determine if a compound provides 

protection to RBCs against oxidative stress and at which concentration. Such assay is more functional 

than a simple “test-tube” chemical-based assay, like the well-known Oxygen Radical Absorbance 

Capacity (ORAC) assay that only observes the direct quenching capacity of an antioxidant toward an 

oxidant. Indeed, a cell-based test also takes into account the uptake and metabolism of the compounds 

of interest and could thus provide better predictions for the situation in complex systems and 

potentially also enable detection of indirect antioxidants. Moreover, the aim was also to propose a 

test compatible with High-Throughput Screening (HTS), that would allow, similarly to the method used 

for drug discovery, to monitor the activity of a high number (thousands) of molecules at once for 

discovery of hit molecules. Then the same assay could be used for a secondary screen to generate the 

dose response curves for the hits. 

A representative HTS assay needs to be robust, reliable and should fulfill the following criteria: 

1) the technical manipulations should be limited to few steps consisting in simple operations such as 

addition, 2) the volume should not exceed a hundred of µL to avoid waste of reagent and ensure that 

a microtiter plate can be used as a container, 3) to simplify the process, the handling should be 

robotized which necessitates a particular instrumentation, i.e. a robotic arm, a pipettor and dispenser 

for liquid handling, a plate centrifuge, washer and shaker, etc., 4) the variables should be restricted to 

the compound and compound concentration, 5) the measurement time should be limited to minutes 

or hours and 6) finally, the assay must include a precise detection method, the readout provided by a 

reader (microplate reader or automated microscope) and the analysis automatically reported using 

statistical criteria. 
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ASSAY DESIGN 

The TSOX was thus designed keeping in mind the questions raised previously, as well as criteria to have 

an HTS-compatible assay (Figure 1). 

 
Figure 1 – Principle of the “TSOX”, i.e. “test of sensitivity to oxidation” assay. Red Blood Cells (RBCs) seeded in a microplate 
are treated with an oxidant and/or an antioxidant. Two possible readouts giving complementary information were proposed. 
The first one is based on the detection of the fluorescence emitted by the 2’-7’-Dichlorofluorescin Diacetate (DCFH-DA) reporter 
probe, activated when intracellular Reactive Oxygen Species (ROS) are generated2. The second consists in the analysis by 
Digital Holographic Microscopy (DHM) of the morphological changes triggered by a particular treatment. 

 

The workflow of the TSOX assay consisted to dispense the RBCs in 96-well microplate. 384- or 1536-

well microplates could also be used depending on the number of conditions to test. Then different 

treatments can be applied successively or simultaneously, and be executed in specific orders according 

to the question asked. 

First sensitization of the RBCs could be done by applying an exogenous stress. This step is 

optional and was only used to amplify pre-existing oxidative stress in order to exacerbate differences 

that would otherwise not be visible. RCC storage could also be considered as a kind of sensitization. 

Then, the protection will be provided by addition of molecules having direct antioxidant properties 

(Reactive Oxygen Species [ROS] scavenger) or indirect effect (e.g. by sustaining the RBC metabolism 

and therefore promoting the recycling or the de novo synthesis of endogenous antioxidants). It can 

work intracellularly, extracellularly or both. Finally, the phase of oxidation will consist in challenging 

oxidatively the platted RBCs by the addition of oxidant molecules (or with a UV treatment, oxygen-

enriched atmosphere, etc.) 

In this Chapter, three oxidants were tested. The use of diverse oxidants with different 

properties is advised as it will maximize the power of the TSOX assay to detect antioxidants with 

various mechanisms of action. The first one was the hydrogen peroxide (H2O2), that is also an 

endogenous ROS. This water-soluble molecule can easily cross the cell membranes and participates 

reactivity has been successfully tested both in phosphate buffer
saline solution and inside HeLa cells.

MATERIALS AND METHODS

Materials. 6″-Carboxy-20,70-dichlorodihydrofluorescein diacetate was
supplied by Santa Cruz Biotechnology (Dallas, USA). Hypericin (Hyp)
was purchased from HWI Analytik GmbH (Ruelzheim, Germany).
Ampicillin, tetraethyl orthosilicate (TEOS), cetyltrimethylammonium
chloride solution (25 wt% in H2O; CTAC), 3-(triethoxysilyl)propyl
isocyanate, 4,7,10-trioxa-1,13-tridecanediamine, N-(3-dimethylamino-
propyl)-N0-ethyl-carbodiimide hydrochloride (EDC), N-hydroxysuccini-
mide (NHS), sodium hypochlorite solution (NaClO; 140 lM), hydrogen
peroxide (H2O2, 30% w/v), potassium superoxide (KO2), methylene blue
(MB), Dulbecco’s phosphate-buffered saline (PBS), L-arabinose and
bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St.
Louis, USA) and used as received. Absolute ethanol, acetonitrile,
trichloroacetonitrile, dichloromethane and hydrochloric acid solution (37
wt% in H2O; HCl) were supplied by Panreac (Barcelona, Spain). B-PER
cell lysis reagent was purchased from Thermo Fisher (Waltham, USA).

The linker N-(4,7,10-trioxa-13-tridecaneamine)-N0-(3-(triethoxysilyl)
propyl)-urea ((EtO)3-Si-L-NH2) was synthetized as described in reference
(30). Mesoporous silica nanoparticles (MSNP) and linker-attached meso-
porous silica nanoparticles (MSNP-L-NH2) were synthetized as described
in references (30,32).

Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g L!1 glu-
cose, fetal bovine serum (FBS), 200 mM l-glutamine and penicillin
(10 000 units mL!1)-streptomycin (10 mg mL!1) solution were supplied
by Lonza (Basel, Switzerland). Trypsin-EDTA solution and Hanks’ bal-
anced salt solution with Ca2+ and Mg2+ (HBSS+) were supplied by
Sigma-Aldrich (St. Louis, USA), and WST-1 was supplied by Roche
Diagnostics (Mannheim, Germany). Human HeLa cervix adenocarcinoma
cells were from American Type Culture Collection (ATCC CCL-2,
Manassas, USA). The cell culture material was supplied by LabClinics
S.A. (Barcelona, Spain).

Conjugation of DCFH-DA onto MSNP-L-NH2 . DCFH-DA
conjugation to MSNP-L-NH2 was performed through Steglich amidation
adapting the procedure proposed by Neises and Steglich (33). Briefly,
4.0 mg (7.5 lmol) of DCFH-DA was previously activated by mixing
them for 2 h with 14.7 mg of EDC (77 lmol) and 14.5 mg (126 lmol)
of NHS in 2 mL of dry CH2Cl2. The mixture was then added dropwise
to 14 mL of a stirred solution of MSNP-L-NH2 in acetonitrile
(7 mg mL!1), and the crude was kept reacting for 72 h in darkness and
at room temperature. Simultaneously, 0.5 g (5 mmol) of anhydrous
Na2CO3 was added in order to deprotonate linker’s amino-terminal
groups, since the amidation is not favorable with the protonated form.
Afterward, nanoDCFH-DA was centrifuged and washed six times with
ethanol (20 min at 17 877 g).

Physical and chemical characterization of MSNPs. Size and f-
potential of the synthesized MSNPs were measured using a Nano-ZS
Zetasizer equipment (Malvern Instruments Ltd, Worcestershire, UK). For
size determination, a 0.1 mg mL!1 aliquot in ethanol was measured. For
f-potential examination, a 0.1 mg mL!1 aliquot in milli-Q water or
acidic/basic water was measured.

Infrared spectra of the MSNPs supported on a potassium bromide disk
were recorded using a Nicolet Magna 560 FTIR spectrophotometer
(Thermo Fisher Scientific, Waltham, USA).

Organic elemental analysis of the NPs was carried out in a EURO
EA-3000 Elemental Analysis system (Eurovector, Pavia, Italy). The
concentration of amino groups (cNH2 ) in MSNP-L-NH2 was deter-
mined as the amount of nitrogen in the NPs divided by 3 on account
that each linker unit contains three nitrogen atoms. Since DCFH-DA
contains no nitrogen, comparison the carbon/nitrogen ratio in
nanoDCFH-DA relative to MSNP-L-NH2 allowed to calculate the
fraction of amino groups functionalized by the probe and therefore
the concentration of DCFH-DA on the nanoparticles.

Sources of ROS. ClO! and H2O2 were added from stock solutions.
O"!

2 was added as a suspension of solid KO2 in anhydrous CCl3CN
(140 mM).˙OH was generated by UV-A irradiation (353 # 20 nm;
6.3 mW cm!2) of a NaNO2 solution (1 mM) (34). 1O2 was generated by
irradiation of a 8.7 lM methylene blue solution with red light
(634 # 8 nm; 7.8 mW cm!2) (35).

Determination of reactive rate constants. Samples of DCFH-DA or
nanoDCFH-DA were exposed to different concentrations of oxidizing
agents, and the ensuing fluorescence increase was used to calculate the
corresponding reactive rate constants. For stable species (ClO!, O2˙

! and
ground-state O2), the method of initial rates was employed. For ˙OH and
1O2, a comparative method was used instead using terephthalic acid as a
reference acceptor for ˙OH (5.3 lM, rate constant 4.4 9 109 M

!1 s!1)
(36) and ADPA as a reference acceptor for 1O2 (1.5 lM, rate constant
8.7 9 107 M

!1 s!1) (37). Details of the methods are given in
Appendix S1 of the Supporting Information file.

Fluorescence measurements. The fluorescence of the nanoprobe and
molecular probe was studied in PBS at the DCFH-DA concentration of
1.5 lM using a FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon,
Edison, USA). Samples were exposed to known amounts of the different
ROS after deacetylation by NaOH treatment and subsequent
neutralization with sulfuric acid (20 mM).

HeLa cells culture. Human carcinoma HeLa cells were grown as
monolayer cultures in DMEM supplemented with 10% (v/v) FBS, 1% (v/
v) penicillin-streptomycin solution and 1% (v/v) l-glutamine. Cells were
cultured in an incubator with 5% CO2 plus 95% air at 37°C. Cells were
seeded in 75-cm2

flask, and subconfluent cell cultures were used.
Viability assay. To evaluate the possible cytotoxicity of nanoDCFH-

DA, the viability of HeLa cells was measured by the WST-1 test
(Roche Diagnostics, Mannheim, Germany). HeLa cells were seeded in
96-well plates at 5000 cells well!1 for 48 h and then exposed to 0.5,
1 and 2 lM of nanoDCFH-DA diluted in HBSS+ for 24 h. Finally,
the cell culture medium was removed and 100 lL well!1 of WST-1
(1:10 dilution) was applied. After 2 h, absorbance was read at
450 nm.

Cell preparation procedure for microscopical analysis. HeLa cells
were seeded in 8-well plates at 5.000 cells well!1 for 24 h. Then, the
cell culture medium was removed and 250 lL well!1 2 lM nanoDCFH-
DA diluted in HBSS+ with and without 10 lM Hyp was added and left
under incubation for 2 h. The cell culture was washed three times with
200 lL well!1 HBSS+ in order to discard the non-internalized suspended
nanoDCFH-DA. Finally, 250 lL well!1 HBSS+ was added before the
microscopical analysis.

Scheme 1. Oxidation of DCFH-DA by ROS.
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via the Fenton Haber-Weiss reaction to the formation of the highly reactive OH• radical, responsible 

for lipid peroxidation, damages to the DNA and protein oxidation. H2O2 can thus be considered as a 

transmitter, to propagate oxidative stress and induce oxidative damages in various locations. 2,2ʹ-

Azobis(2-methylpropionamidine) dihydrochloride (AAPH) was also evaluated as a source of oxidative 

stress. Indeed, this hydrophilic azo compound has a higher oxidant capacity than H2O2
3, and is capable 

to trigger nucleophilic reactions and free radical oxidations4. Shortly, the generation of free radical 

occurs when the azo compound in solution undergoes thermal decomposition or hydrolysis at a 

constant rate (first order reaction) and forms a nitrogen (N2) and two carbon radicals (R•) that can 

either combine and form stable products or react with oxygen (O2) to generate peroxyl radicals (ROO•) 

(see Table 1 for chemical structure)4. Such radical can trigger chain oxidation of lipids and proteins and 

ultimately lead to oxidative hemolysis5. The last oxidant to be tested was the diamide. It is a thiol-

oxidizing agent that targets sulfhydryl groups in glutathione and amino acids such as the cysteine, 

(selenocysteine) and methionine. 

Two readouts were selected for this assay (Figure 1). The first one was based on the detection 

of the fluorescence emitted by the 2’-7’-Dichlorofluorescin Diacetate (DCFH-DA)2 reporter probe, 

activated when intracellular ROS are generated. The use of the redox-sensitive DCFH-DA molecule for 

oxidative stress quantification in a cell model is not new and was already described by Wang and 

Joseph in 19996. The first Cellular Antioxidant Assay (CAA) using DCFH-DA as reporter probe was 

developed by Wolfe and Liu in 2007 on HepG2 cells to test the antioxidant activity of phytochemical 

food extracts and dietary supplements7. Then, different research teams have adapted it on diverse cell 

lines to test various substances. RBCs were also used as cell models, such as in the CAP-e assay 

proposed by Honzel et al. in 20088. A flow cytometer was first used for the quantification of the 

fluorescence in the early TSOX development phase; however, this method is barely compatible with 

HTS and was therefore replaced by a microplate fluorometer. Flow cytometry could be used to after 

the initial screening phase to decipher the mechanism of action of the hit molecules. The second 

readout based on image analysis by DHM was proposed as it delivers complementary information. 

DHM was introduced in Chapter 1 and has previously been validated for HTS applications (automation 

available)9,10. Moreover, a fluorescent camera can also be mounted on the DHM. 
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MATERIAL AND METHODS 

Oxidative stress induction 

The different compounds tested to generate oxidative stress are listed in Table 1. 
 

 Table 1 – Compounds tested for oxidative stress generation. 

  ROS: Reactive Oxygen Species, H2O2: hydrogen peroxide, AAPH: 2,2ʹ-Azobis(2-methylpropionamidine) dihydrochloride. 
 

Oxidative stress generation using UVB (280-350 nm) was also tested (data no shown). To do so, RBC 

samples in tubes were put inside a dark cabinet and were illuminated with UVB lamps (Philips UVB 

broadband TL 20W/12, Elevite) for a given duration, at room temperature (RT) under agitation. Details 

of experimental conditions will be provided directly within the “Results and discussion” section. 

Readouts for the TSOX assay 

Analysis of reactive oxygen species generation using DCFH-DA fluorescent reporter probe 

The DCFH-DA probe was used for the monitoring of the general oxidative stress as it detects non-

specifically different ROS within live-cells11–16. The DCFH-DA molecule is non-ionic and non-polar, which 

enables its passage through the plasma membrane11. After entering the cells, the DA moieties are 

hydrolyzed (deacetylation) by the cellular esterases. The resulting DCFH molecule is more polar and is 

therefore retained within the cell. In presence of ROS, the reporter probe becomes fluorescent (green 

highlighted molecule in Figure 2). 
 

  
Figure 2 – Activation of 2’-7’-Dichlorofluorescin Diacetate (DCFH-DA), i.e. reactive oxygen species fluorescent reporter. 
Modified from Kellet et al., Food Chemistry, 201811. 
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and MW 

Mechanism of ROS generation Structure References 

H2O2 

34.01 g/mol 
Water-soluble oxidizing agent, inorganic 
peroxide       

Sigma-Aldrich, H1009.  
PubChem CID 784 

Diamide 
172.19 g/mol 

Thiol-oxidizing agent, oxidizes sulfhydryl 
groups to disulfide form  

Sigma-Aldrich, D3648. 
PubChem CID 5353800 

AAPH 
271.19 g/mol 

Water-.soluble azo compound, peroxyl 
radicals (ROO•) generation, temperature-
dependent degradation at constant rate4  

 

Sigma-Aldrich. 440914.  
PubChem CID 76344 

diacetate or DCFH-DA) to monitor the inhibition of peroxyl radical-
induced oxidation inside the cell. The ester form of the dye (DCFH-DA)
is employed, because it is nonionic and non-polar and thus can rapidly
transport across the cell membrane (LeBel, Ischiropoulos, & Bondy,
1992; Wang & Joseph, 1999). Once inside the cell, the DCFH-DA is
deacetylated by endogenous cellular esterases and left in the more
oxidizable DCFH form (Figs. 1 and 2). A free-radical generator, namely
2,2′-azobis (2-amidinopropane) dihydrochloride (ABAP), is added to

the system and begins to form peroxyl radicals. Other reactive oxygen
species (ROS) are generated endogenously through cellular function
(Sies, 1993). If an antioxidant is introduced and able to enter the cell, it
can compete with radicals and quench them in a variety of ways,
keeping the DCFH from being oxidized to form the fluorescent 2′,7′-
dichlorofluorescein (DCF). The principle of the CAA assay, along with
possible pathways of radical quenching can be found in Fig. 1. The
effectiveness of the sum total of these pathways is evaluated by mon-
itoring the intracellular fluorescence resulting from DCFH over a time
course: reduced fluorescence compared to a control (i.e., wells void of
antioxidant compounds) indicates a sample has substantial antioxidant
activity within the cell.

The CAA assay is quantitated by the CAA unit (i.e., the relative
reduction in fluorescence, expressed in percent), which takes into ac-
count relative areas under the curves of sample wells and control wells.
The higher the CAA unit, the more effective the antioxidant is in a
cellular system. The assay has been used with HepG2 cells for a variety
of pure phytochemicals found in food, such as quercetin, gallic acid,
and caffeic acid, as well as several common fruit and vegetable extracts
literature (Wolfe & Liu, 2007; Wolfe et al., 2008; Song et al., 2010).
Commercial products, such as the OxiSelect™ Cellular Antioxidant
Assay Kit, are available (Cell Biolabs, 2013). Recently, the assay was
modified for analysis in the Caco-2 cell line. Wan et al. (2015) changed
cell plating density, probe concentration, and the choice of peroxyl
radical generator (i.e., 2,2′-azobis(2-methyl propionamidine dihy-
drochloride, AAPH) for better results. As the assay is still relatively new
and is thus continually being modified for a variety of applications,
standardization has not yet occurred. In fact, there is no universally
accepted method for the measurement of antioxidants (Niki, 2010). For
these reasons, discrepancies among labs are common.

Previously, CAA assays have been performed for fruit and vegetable
extracts using HepG2 cells, all with quercetin as the standard (Wolfe
et al., 2008; Song et al., 2010; Wan et al., 2015). Other foodstuffs, such
as tree nuts, are relatively poor in quercetin, but rich in flavan-3-ols like
(+)-catechin, (−)-epicatechin, their derivatives, and proanthocyani-
dins. It is hypothesized that because the intestinal barrier and bioa-
vailability are the main factors affecting the function of antioxidants in
vivo, the Caco-2 cell line should serve as a superior model to screen
phytochemical-rich foods for potential antioxidant activity. Most food
extracts being tested now employ the HepG2 cell line and the quercetin
standard curve, which has limitations. In this study, the CAA assay was

Fig. 1. Possible mechanisms of action of antioxidants in
cells incubated with 2′,7′-dichlorofluorescin diacetate
(DCFH-DA). They may (1) competitively quench free radi-
cals before they can reach the 2′,7′-dichlorofluorescin
(DCFH) dye; (2) react with the 2,2′-azobis (2-amidinopro-
pane) dihydrochloride (ABAP) directly to inhibit the for-
mation of radicals; (3) inhibit lipid peroxidation; (4) react
with alkyl peroxy radicals to stop propagation of other ra-
dicals; and (5) inhibit intracellular redox pathways that can
also oxidize the DCFH (Wolfe & Liu, 2007; Wardman, 2008;
López-Alarcón, & Denicola, 2013). Additional abbreviations
are as follows: ROO%, alkyl peroxy radical; ROS/RNS, re-
active oxygen species/reactive nitrogen species; XH/X% an-
tioxidant/antioxidant radical; LH/LOO%, lipid/lipid peroxy
radical; and DCF, 2′,7′-dichlorofluorescein.

Fig. 2. Chemistry of the 2′,7′-dichlorofluorescin diacetate (DCFH-DA) after it enters the
HepG2 or Caco-2 cell lines.
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The DCF is excited at a wavelength of 504 nm and emits at 529 nm (in ethanol) and is thus compatible 

with the common Fluorescein (FITC) filter set. For the analyses, DCFH-DA (D6883 purchased from 

Sigma-Aldrich) was prepared at 10 mM in 100 % DMSO and aliquots were stored at -28°C. 

Treatment of the red blood cells with DCFH-DA reporter probe 

RBCs sampled in RCCs (using a sterile syringe through a sample site) were washed 1-2x with 0.9 % NaCl 

(10 min of centrifugation at 2000 g and 4°C). Then, the RBCs were resuspended at 10 % Hematocrit 

(HCT) in 0.9 % NaCl, treated with 50 µM DCFH-DA (0.5 % DMSO) and incubated during 30 min at 37°C 

under agitation to enable incorporation of the dye within the cells. Finally, the tubes were centrifuged 

(as before) and the supernatant containing the excess of DCFH-DA was discarded. 

Quantification of fluorescence emission using a microplate fluorometer 

For fluorescence analysis, the RBCs treated with the DCFH-DA probe were further diluted at 1 % HCT 

in 0.9 % NaCl and dispensed in a 96-well imaging plate (ref. 353219, Black/Clear, Falcon). Then, 10 µL 

of oxidant and/or antioxidant stock solutions (20x) were added. The final volume in each well was 200 

µL. The plate was incubated at 37°C during the timelapse analysis.  

The microplate fluorometer that was used is a Fluoroskan Ascent (and Ascent Software, 

Thermo Fisher Scientific), equipped with a fluorometric filter pair (Ex/Em 492/527 nm). This device can 

be programmed to perform automatically a list of steps, and possesses orbital shaking, dispenser and 

incubator functions. The main advantage of such device in comparison to the flow cytometry is the 

possibility to analyze simultaneously and with kinetic measurements a high number of conditions. 

However, it only provides a picture of the bulk fluorescence (cells and surrounding) within the wells. 

Analysis of morphological changes using digital holographic microscopy 

The impact of oxidative stress on RBC morphology was assessed using a Digital Holographic Microscope 

(DHM) equipped with a motorized microscope stage, an incubator system, and 20x/0.40 NA objective. 

More details about this technology are provided in Chapter 1. 

The RBCs were taken in RCCs using a sterile syringe through a sample site and were washed 

(1-2x) with 0.9 % NaCl (10 min of centrifugation at 2000 g and 4°C). Before the analysis, the pellet was 

resuspended in HEPA (composition described in ANNEX-1). Then, 80’000 RBCs were seeded per well 

in a 96-well black imaging plate coated with poly-L-ornithine (procedure in ANNEX-2). To sediment the 

cells more rapidly, the plate was gently centrifuged (2 min, 140 g, RT). Then, 10 µL of oxidant and/or 

antioxidant stock solutions (10x) were added per well. The final volume in each well was of 100 µL. For 

imaging, the plate was put under the microscope in the incubation chamber set at 37°C and 5 % CO2, 

and four images were taken per well at 20x magnification. The evolution of the treated RBCs was 

followed during timelapse analysis. 
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As described before, the output of DHM analyses are 1) the phase images and 2) a quantitative value, 

i.e. optical path difference (OPD) for each pixel of the phase image. For the TSOX, the average of the 

OPD distribution (OPD avg), as well as the confluency parameter were retained. The confluency refers 

here to the percentage of the phase image occupied by RBCs, the evolution of such parameter will 

thus be impacted by cell swelling or shrinkage and is strongly reduced in case of hemolysis. In general, 

confluency was normalized (divided by the confluency measured at right after the oxidant addition), 

as this parameter depends on the cell seeding. 

RESULTS AND DISCUSSION 

TSOX development: generation of oxidative stress 

The first step in the TSOX development consisted in testing the effect of various sources of oxidative 

stress on RBCs and to determine if the changes induced were quantifiable with the proposed readouts, 

i.e. measurements of DCFH-DA fluorescence emission using the Fluoroskan fluorometer and 

evaluation of morphological changes by DHM. 

Fluorescence as readout to monitor reactive oxygen species generation under H2O2, diamide and 

AAPH treatment 

The effect of H2O2, diamide and AAPH oxidants at three concentrations was evaluated as shown in 

Figure 3. Two control experiments were also conducted to determine: 1) if fluorescence was emitted 

when DCFH (after -DA group cleavage) was submitted to oxidative stress outside the cell (“Lysed RBCs” 

control) and 2) if the DCFH-DA probe could be activated by the oxidants even in absence of cells (“No 

RBCs” control). 
 

 
Figure 3 – Analysis workflow for the monitoring of the oxidative stress triggered by oxidant treatment using fluorescence 

readout. Red blood cells treated with the 2',7'-Dichlorofluorescin Diacetate (DCFH-DA) probe are plated in a multiwell imaging 
plate and treated with hydrogen peroxide (H2O2), diamide, or 2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). A 
fluorometer is used to quantify the fluorescence emitted which increases when intracellular reactive oxygen species are 
generated. 

 

RBCs taken from an RCC were treated with DCFH-DA and resuspended at 1 % HCT either in 0.9 % NaCl, 

or in dH2O for cell lysis. The lysed RBCs were vortexed during 2 min at RT, centrifuged during 5 min at 

3200 g and 4°C to pellet the cell membranes, and the supernatant was collected (“Lysed RBCs” 

reactivity has been successfully tested both in phosphate buffer
saline solution and inside HeLa cells.

MATERIALS AND METHODS

Materials. 6″-Carboxy-20,70-dichlorodihydrofluorescein diacetate was
supplied by Santa Cruz Biotechnology (Dallas, USA). Hypericin (Hyp)
was purchased from HWI Analytik GmbH (Ruelzheim, Germany).
Ampicillin, tetraethyl orthosilicate (TEOS), cetyltrimethylammonium
chloride solution (25 wt% in H2O; CTAC), 3-(triethoxysilyl)propyl
isocyanate, 4,7,10-trioxa-1,13-tridecanediamine, N-(3-dimethylamino-
propyl)-N0-ethyl-carbodiimide hydrochloride (EDC), N-hydroxysuccini-
mide (NHS), sodium hypochlorite solution (NaClO; 140 lM), hydrogen
peroxide (H2O2, 30% w/v), potassium superoxide (KO2), methylene blue
(MB), Dulbecco’s phosphate-buffered saline (PBS), L-arabinose and
bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St.
Louis, USA) and used as received. Absolute ethanol, acetonitrile,
trichloroacetonitrile, dichloromethane and hydrochloric acid solution (37
wt% in H2O; HCl) were supplied by Panreac (Barcelona, Spain). B-PER
cell lysis reagent was purchased from Thermo Fisher (Waltham, USA).

The linker N-(4,7,10-trioxa-13-tridecaneamine)-N0-(3-(triethoxysilyl)
propyl)-urea ((EtO)3-Si-L-NH2) was synthetized as described in reference
(30). Mesoporous silica nanoparticles (MSNP) and linker-attached meso-
porous silica nanoparticles (MSNP-L-NH2) were synthetized as described
in references (30,32).

Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g L!1 glu-
cose, fetal bovine serum (FBS), 200 mM l-glutamine and penicillin
(10 000 units mL!1)-streptomycin (10 mg mL!1) solution were supplied
by Lonza (Basel, Switzerland). Trypsin-EDTA solution and Hanks’ bal-
anced salt solution with Ca2+ and Mg2+ (HBSS+) were supplied by
Sigma-Aldrich (St. Louis, USA), and WST-1 was supplied by Roche
Diagnostics (Mannheim, Germany). Human HeLa cervix adenocarcinoma
cells were from American Type Culture Collection (ATCC CCL-2,
Manassas, USA). The cell culture material was supplied by LabClinics
S.A. (Barcelona, Spain).

Conjugation of DCFH-DA onto MSNP-L-NH2 . DCFH-DA
conjugation to MSNP-L-NH2 was performed through Steglich amidation
adapting the procedure proposed by Neises and Steglich (33). Briefly,
4.0 mg (7.5 lmol) of DCFH-DA was previously activated by mixing
them for 2 h with 14.7 mg of EDC (77 lmol) and 14.5 mg (126 lmol)
of NHS in 2 mL of dry CH2Cl2. The mixture was then added dropwise
to 14 mL of a stirred solution of MSNP-L-NH2 in acetonitrile
(7 mg mL!1), and the crude was kept reacting for 72 h in darkness and
at room temperature. Simultaneously, 0.5 g (5 mmol) of anhydrous
Na2CO3 was added in order to deprotonate linker’s amino-terminal
groups, since the amidation is not favorable with the protonated form.
Afterward, nanoDCFH-DA was centrifuged and washed six times with
ethanol (20 min at 17 877 g).

Physical and chemical characterization of MSNPs. Size and f-
potential of the synthesized MSNPs were measured using a Nano-ZS
Zetasizer equipment (Malvern Instruments Ltd, Worcestershire, UK). For
size determination, a 0.1 mg mL!1 aliquot in ethanol was measured. For
f-potential examination, a 0.1 mg mL!1 aliquot in milli-Q water or
acidic/basic water was measured.

Infrared spectra of the MSNPs supported on a potassium bromide disk
were recorded using a Nicolet Magna 560 FTIR spectrophotometer
(Thermo Fisher Scientific, Waltham, USA).

Organic elemental analysis of the NPs was carried out in a EURO
EA-3000 Elemental Analysis system (Eurovector, Pavia, Italy). The
concentration of amino groups (cNH2 ) in MSNP-L-NH2 was deter-
mined as the amount of nitrogen in the NPs divided by 3 on account
that each linker unit contains three nitrogen atoms. Since DCFH-DA
contains no nitrogen, comparison the carbon/nitrogen ratio in
nanoDCFH-DA relative to MSNP-L-NH2 allowed to calculate the
fraction of amino groups functionalized by the probe and therefore
the concentration of DCFH-DA on the nanoparticles.

Sources of ROS. ClO! and H2O2 were added from stock solutions.
O"!

2 was added as a suspension of solid KO2 in anhydrous CCl3CN
(140 mM).˙OH was generated by UV-A irradiation (353 # 20 nm;
6.3 mW cm!2) of a NaNO2 solution (1 mM) (34). 1O2 was generated by
irradiation of a 8.7 lM methylene blue solution with red light
(634 # 8 nm; 7.8 mW cm!2) (35).

Determination of reactive rate constants. Samples of DCFH-DA or
nanoDCFH-DA were exposed to different concentrations of oxidizing
agents, and the ensuing fluorescence increase was used to calculate the
corresponding reactive rate constants. For stable species (ClO!, O2˙

! and
ground-state O2), the method of initial rates was employed. For ˙OH and
1O2, a comparative method was used instead using terephthalic acid as a
reference acceptor for ˙OH (5.3 lM, rate constant 4.4 9 109 M

!1 s!1)
(36) and ADPA as a reference acceptor for 1O2 (1.5 lM, rate constant
8.7 9 107 M

!1 s!1) (37). Details of the methods are given in
Appendix S1 of the Supporting Information file.

Fluorescence measurements. The fluorescence of the nanoprobe and
molecular probe was studied in PBS at the DCFH-DA concentration of
1.5 lM using a FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon,
Edison, USA). Samples were exposed to known amounts of the different
ROS after deacetylation by NaOH treatment and subsequent
neutralization with sulfuric acid (20 mM).

HeLa cells culture. Human carcinoma HeLa cells were grown as
monolayer cultures in DMEM supplemented with 10% (v/v) FBS, 1% (v/
v) penicillin-streptomycin solution and 1% (v/v) l-glutamine. Cells were
cultured in an incubator with 5% CO2 plus 95% air at 37°C. Cells were
seeded in 75-cm2

flask, and subconfluent cell cultures were used.
Viability assay. To evaluate the possible cytotoxicity of nanoDCFH-

DA, the viability of HeLa cells was measured by the WST-1 test
(Roche Diagnostics, Mannheim, Germany). HeLa cells were seeded in
96-well plates at 5000 cells well!1 for 48 h and then exposed to 0.5,
1 and 2 lM of nanoDCFH-DA diluted in HBSS+ for 24 h. Finally,
the cell culture medium was removed and 100 lL well!1 of WST-1
(1:10 dilution) was applied. After 2 h, absorbance was read at
450 nm.

Cell preparation procedure for microscopical analysis. HeLa cells
were seeded in 8-well plates at 5.000 cells well!1 for 24 h. Then, the
cell culture medium was removed and 250 lL well!1 2 lM nanoDCFH-
DA diluted in HBSS+ with and without 10 lM Hyp was added and left
under incubation for 2 h. The cell culture was washed three times with
200 lL well!1 HBSS+ in order to discard the non-internalized suspended
nanoDCFH-DA. Finally, 250 lL well!1 HBSS+ was added before the
microscopical analysis.

Scheme 1. Oxidation of DCFH-DA by ROS.
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(10 000 units mL!1)-streptomycin (10 mg mL!1) solution were supplied
by Lonza (Basel, Switzerland). Trypsin-EDTA solution and Hanks’ bal-
anced salt solution with Ca2+ and Mg2+ (HBSS+) were supplied by
Sigma-Aldrich (St. Louis, USA), and WST-1 was supplied by Roche
Diagnostics (Mannheim, Germany). Human HeLa cervix adenocarcinoma
cells were from American Type Culture Collection (ATCC CCL-2,
Manassas, USA). The cell culture material was supplied by LabClinics
S.A. (Barcelona, Spain).

Conjugation of DCFH-DA onto MSNP-L-NH2 . DCFH-DA
conjugation to MSNP-L-NH2 was performed through Steglich amidation
adapting the procedure proposed by Neises and Steglich (33). Briefly,
4.0 mg (7.5 lmol) of DCFH-DA was previously activated by mixing
them for 2 h with 14.7 mg of EDC (77 lmol) and 14.5 mg (126 lmol)
of NHS in 2 mL of dry CH2Cl2. The mixture was then added dropwise
to 14 mL of a stirred solution of MSNP-L-NH2 in acetonitrile
(7 mg mL!1), and the crude was kept reacting for 72 h in darkness and
at room temperature. Simultaneously, 0.5 g (5 mmol) of anhydrous
Na2CO3 was added in order to deprotonate linker’s amino-terminal
groups, since the amidation is not favorable with the protonated form.
Afterward, nanoDCFH-DA was centrifuged and washed six times with
ethanol (20 min at 17 877 g).

Physical and chemical characterization of MSNPs. Size and f-
potential of the synthesized MSNPs were measured using a Nano-ZS
Zetasizer equipment (Malvern Instruments Ltd, Worcestershire, UK). For
size determination, a 0.1 mg mL!1 aliquot in ethanol was measured. For
f-potential examination, a 0.1 mg mL!1 aliquot in milli-Q water or
acidic/basic water was measured.

Infrared spectra of the MSNPs supported on a potassium bromide disk
were recorded using a Nicolet Magna 560 FTIR spectrophotometer
(Thermo Fisher Scientific, Waltham, USA).

Organic elemental analysis of the NPs was carried out in a EURO
EA-3000 Elemental Analysis system (Eurovector, Pavia, Italy). The
concentration of amino groups (cNH2 ) in MSNP-L-NH2 was deter-
mined as the amount of nitrogen in the NPs divided by 3 on account
that each linker unit contains three nitrogen atoms. Since DCFH-DA
contains no nitrogen, comparison the carbon/nitrogen ratio in
nanoDCFH-DA relative to MSNP-L-NH2 allowed to calculate the
fraction of amino groups functionalized by the probe and therefore
the concentration of DCFH-DA on the nanoparticles.

Sources of ROS. ClO! and H2O2 were added from stock solutions.
O"!

2 was added as a suspension of solid KO2 in anhydrous CCl3CN
(140 mM).˙OH was generated by UV-A irradiation (353 # 20 nm;
6.3 mW cm!2) of a NaNO2 solution (1 mM) (34). 1O2 was generated by
irradiation of a 8.7 lM methylene blue solution with red light
(634 # 8 nm; 7.8 mW cm!2) (35).

Determination of reactive rate constants. Samples of DCFH-DA or
nanoDCFH-DA were exposed to different concentrations of oxidizing
agents, and the ensuing fluorescence increase was used to calculate the
corresponding reactive rate constants. For stable species (ClO!, O2˙

! and
ground-state O2), the method of initial rates was employed. For ˙OH and
1O2, a comparative method was used instead using terephthalic acid as a
reference acceptor for ˙OH (5.3 lM, rate constant 4.4 9 109 M

!1 s!1)
(36) and ADPA as a reference acceptor for 1O2 (1.5 lM, rate constant
8.7 9 107 M

!1 s!1) (37). Details of the methods are given in
Appendix S1 of the Supporting Information file.

Fluorescence measurements. The fluorescence of the nanoprobe and
molecular probe was studied in PBS at the DCFH-DA concentration of
1.5 lM using a FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon,
Edison, USA). Samples were exposed to known amounts of the different
ROS after deacetylation by NaOH treatment and subsequent
neutralization with sulfuric acid (20 mM).

HeLa cells culture. Human carcinoma HeLa cells were grown as
monolayer cultures in DMEM supplemented with 10% (v/v) FBS, 1% (v/
v) penicillin-streptomycin solution and 1% (v/v) l-glutamine. Cells were
cultured in an incubator with 5% CO2 plus 95% air at 37°C. Cells were
seeded in 75-cm2

flask, and subconfluent cell cultures were used.
Viability assay. To evaluate the possible cytotoxicity of nanoDCFH-

DA, the viability of HeLa cells was measured by the WST-1 test
(Roche Diagnostics, Mannheim, Germany). HeLa cells were seeded in
96-well plates at 5000 cells well!1 for 48 h and then exposed to 0.5,
1 and 2 lM of nanoDCFH-DA diluted in HBSS+ for 24 h. Finally,
the cell culture medium was removed and 100 lL well!1 of WST-1
(1:10 dilution) was applied. After 2 h, absorbance was read at
450 nm.

Cell preparation procedure for microscopical analysis. HeLa cells
were seeded in 8-well plates at 5.000 cells well!1 for 24 h. Then, the
cell culture medium was removed and 250 lL well!1 2 lM nanoDCFH-
DA diluted in HBSS+ with and without 10 lM Hyp was added and left
under incubation for 2 h. The cell culture was washed three times with
200 lL well!1 HBSS+ in order to discard the non-internalized suspended
nanoDCFH-DA. Finally, 250 lL well!1 HBSS+ was added before the
microscopical analysis.

Scheme 1. Oxidation of DCFH-DA by ROS.

1144 Roger Bresol!ı-Obach et al.

Fluoroskan

37°C

DCFH-DA
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control). For the “No RBCs” control, DCFH-DA was diluted at 50 µM in 0.9 % NaCl and kept 30 min 

under agitation at 37°C to mimic the standard protocol. Finally, 190 µL of the RBCs, “Lysed RBCs” and 

“No RBCs” samples were dispensed in different wells and treated with 10 µL of 10x H2O2, diamide and 

AAPH stock solutions (two wells per condition). The concentrations tested were 0, 0.001, 0.005 or 0.01 

% H2O2, with 0, 250, 500 or 1000 µM diamide, as well as 0, 100, 500 or 1000 µM AAPH. After that, 

fluorescence was recorded overnight with the Fluoroskan fluorometer (plate incubated at 37°C). 
 

 
Figure 4 – Fluorescence emission triggered in red blood cells by different concentrations of hydrogen peroxide (H2O2), 

diamide, or 2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). Timelapse analysis of fluorescence emission by the 2',7'-
Dichlorofluorescin Diacetate (DCFH-DA) reporter probe (i.e. intracellular reactive oxygen species generation) triggered by 0, 
0.001, 0.005 or 0.01 % H2O2, by 0, 250, 500 or 1000 µM diamide, or by 0, 100, 500 or 1000 µM AAPH treatment. Mean value 
for two wells ± standard deviation. 

 

As expected, the fluorescence emission was positively correlated to the oxidant concentration (Figure 

4). The reaction onset was fast for H2O2 and slower for diamide and AAPH (see initial slopes). The signal 

also increased in the control, suggesting that endogenous and/or exogenous ROS were spontaneously 

generated. 

The fluorescence curves are full of information about the kinetics of the reactions and could 

help to decipher the mechanisms of action of the different molecules tested. However, this kind of 

data presentation can become dense and difficult to analyze when the number of conditions increases. 

It is the reason why, with a view of applying the TSOX to HTS, different quantitative analysis parameters 

were proposed. Two quantitative parameters were selected for the statistical analysis of fluorescence 

(Figure 5). First, the slopes (A.U. per minute) were extracted. To do so, linear regression was calculated 

using PRISM software (GraphPad Prism version 8 for Mac) on the basis of the least squares approach. 

It should be noted that the lines were forced to go through x = 0 and y = 0. The fitting was restricted 

to the linear part of the curve, i.e. limited to the first 140 min of the timelapse for H2O2, 480 min for 

diamide and 240 min for AAPH. The second parameter proposed was the Area Under the Curve (AUC). 

It was again calculated with PRISM software that computes it by the trapezoidal method. The baseline 

fluorescence was assumed to be equal to 0 A.U. 
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Figure 5 – Quantitative analysis of fluorescence emission triggered in red blood cells by different concentrations of 

hydrogen peroxide (H2O2), diamide, or 2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). [Left] Illustration of the 
selected analysis parameters for fluorescence curves. [In box] slope and Area Under the Curve (AUC) calculated from the 
fluorescence curves presented in Figure 4. Mean value for two wells ± standard deviation. 

 

Both parameters selected enabled to discriminate control from RBCs treated either with H2O2, diamide 

or AAPH. In the TSOX, increased values of initial slope and AUC are expected in presence of oxidants, 

which was the case here. Moreover, the values were positively correlated to the oxidant 

concentration, i.e. the slope steepness indicating more particularly at which rate ROS are generated 

and the AUC informing about the global quantity of ROS produced. The reason that a maximum is 

reached could be that all DCFH within the cell has been converted to DCF. However, in such case the 

value of the plateau should be identical when RBCs are treated with similar amounts of fluorescent 

probe. Another reason could be that all oxidant molecules were quenched or degraded, e.g. by the 

cellular endogenous antioxidant defenses. Finally, cell lysis that certainly occurs during the incubation 

in 0.9 % NaCl at 37°C under oxidative stress also impacts the global fluorescence. Indeed, lower levels 

of fluorescence were emitted in the “Lysed RBCs” controls (Figure 6, top). Finally, the signal remained 

almost null in the “No RBCs” samples, confirming that the -DA group must be cleaved to enable 

fluorescence emission (Figure 6, bottom). 
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Figure 6 – Fluorescence emission triggered in “Lysed RBCs” and “No RBCs” controls by different concentrations of hydrogen 

peroxide (H2O2), diamide, or 2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). Timelapse analysis of fluorescence 
emission by the 2',7'-Dichlorofluorescin Diacetate (DCFH-DA) reporter probe (i.e. intracellular reactive oxygen species 
generation) triggered by 0, 0.001, 0.005 or 0.01 % H2O2, by 0, 250, 500 or 1000 µM diamide, or by 0, 100, 500 or 1000 µM 
AAPH treatment in “Lysed RBCs” [top] and “No RBCs” [bottom] control samples. Mean value for two wells ± standard 
deviation. RBC: red blood cell. 

 

Morphology readout: analysis of morphological changes under H2O2, diamide and AAPH treatment 

After evaluating the DCFH-DA ROS reporter probe to study the effect of H2O2, diamide or AAPH 

treatment, the same approach was applied to determine if the oxidation induced lesions to the RBCs 

that would be observable and quantifiable by DHM, i.e. significant variation of OPD, the quantitative 

DHM output (Figure 7). 
 

 
Figure 7 – Analysis workflow for the monitoring of the oxidative stress triggered by oxidant treatment using Digital 

Holographic Microscopy (DHM) readout. Red blood cells are plated in a multiwell imaging plate and treated with hydrogen 
peroxide (H2O2), diamide or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). The DHM is used to quantify the changes 
of morphology. 
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To do so, RBCs taken from a RCC were prepared as usual for DHM imaging (3 wells/condition). They 

were treated with 0, 0.001, 0.005, 0.01 or 0.1 % H2O2, with 0, 0.5, 1, 2.5, 5, 7.5 or 10 mM diamide, as 

well as 0, 1, 2.5, 5, 7.5 or 10 mM AAPH and incubated (with frequent imaging) during approximatively 

10h at 37°C and 5 % CO2. 
 

 
Figure 8 – Morphological changes triggered in red blood cells (RBCs) by hydrogen peroxide (H2O2), diamide, or 2'-Azobis(2-

amidinopropane) dihydrochloride (AAPH), analyzed by Digital Holographic Microscopy (DHM). [Left] Timelapse analysis of 
the Average of the Optical Path Difference distribution (OPD avg) parameter. [Right] Illustrative phase images acquired by 
DHM of treated RBCs at given time points. Mean value for three wells ± standard deviation. 

 

Each oxidant induced a unique change of RBC morphology (Figure 8). H2O2 did not modified the 

apparent RBC biconcave shape but leaded to a loss of the projected area. The response of RBCs to 

diamide treatment exhibited a delayed onset during which the discocytic morphology was maintained 

for a short period of time. Then, the sudden increase of OPD reflected a complete membrane 

destabilization leading to formation of echinocytes exhibiting large spicules, accompanied with loss of 

large portions of membrane. The maximum of the curve corresponding to the formation of 

spherocytes (e.g. see image at 280 min in Figure 8). The spherocytic RBCs have a strong OPD signal, 

because they are thicker and more dense (higher Mean Corpuscular Hemoglobin Concentration 

[MCHC]). Finally, the OPD signal dropped because of cell lysis, leaving only crenated ghosts (end-point 

image in Figure 8). AAPH also ultimately leaded to RBC hemolysis, but in a more progressive and 

controlled way than the diamide. 
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Figure 9 – Morphological changes triggered in Red Blood Cells (RBCs) by different concentration of hydrogen peroxide 

(H2O2). Timelapse analysis by Digital Holographic Microscopy (DHM) of morphological changes under 0, 0.001, 0.005, 0.01 or 
0.1 % H2O2 treatment. [Left] Evolution of Average of the Optical Path Difference distribution (OPD avg) and confluency. Mean 
value for three wells ± standard deviation. [Right] Illustrative phase images acquired by DHM of RBCs treated with 0.001, 0.01 
or 0.1 % H2O2 at three time points, with zoom on a random RBC. 

 

As described before, the H2O2 treatment induced the formation of smaller RBCs that generally kept 

their discocytic shape. As for fluorescence, the changes occurred rapidly after treatment. Interestingly, 

the response pattern differed according to the concentrations tested (Figure 9). Indeed, at 0.005 % 

and 0.01 % H2O2, the OPD signal increased mostly within the first 30 min following the exposition to 

the oxidative stress and reached a plateau, whereas it decreased at the same time with 0.001 and 0.1 

% H2O2. Interestingly, the lower concentration tested (i.e. 0.001 % H2O2), impacted the most the OPD 

avg and the highest (i.e. 0.1 % H2O2) the least. 
 

 
Figure 10 – Quantitative analysis of the morphological changes triggered in red blood cells by different concentrations of 

hydrogen peroxide (H2O2). [Left box] Area Under the Curve (AUC) and end-point calculated from the Average of the Optical 
Path Difference distribution (OPD avg) curves presented in Figure 9. [Right box] AUC and end-point calculated from the 
confluency curves presented in Figure 9. Mean value for three wells ± standard deviation. 

0 100 200 300 400 500 600
120

130

140

150

160
O

PD
 a

vg
 / 

nm

0.1%

0.01%
0.005%

0.001%
Ctrl

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time / min

C
on

flu
en

cy
 (n

or
m

al
iz

ed
)

0.001%

0.01%

0.1%

25 min 130 min 610 min

0 %

0.0
01

%

0.0
05

%
0.0

1% 0.1
%

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

H2O2

A
U

C
 / 

nm
*m

in

AUC

0 %

0.0
01

%

0.0
05

%
0.0

1% 0.1
%

0

50

100

150

200

H2O2

O
PD

 a
vg

 / 
nm

End-point

0 %

0.0
01

%

0.0
05

%
0.0

1% 0.1
%

0

200

400

600

H2O2

A
U

C
 / 

co
nf

lu
en

cy
*m

in

AUC

0 %

0.0
01

%

0.0
05

%
0.0

1% 0.1
%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H2O2

C
on

flu
en

cy
 (n

or
m

al
iz

ed
)

End-point

OPD avg Confluency



 CHAPTER 4  130 

The problem of using H2O2 for the TSOX assay was the effect of this oxidant on the RBCs that was 

poorly reflected by the DHM variables like the OPD avg and confluency (Figure 10). Therefore, none of 

the potential quantitative analysis parameters, such as AUC or end-point were significantly different 

between untreated and treated RBCs. Unfortunately, higher concentrations of H2O2 could not be used 

because formation of bubbles occurred and strongly biased the OPD signal. 
 

 
Figure 11 – Morphological changes triggered in Red Blood Cells (RBCs) by different concentrations of diamide. Timelapse 
analysis by Digital Holographic Microscopy (DHM) of morphological changes under 0, 0.5, 1, 2.5, 5, 7.5 or 10 mM diamide 
treatment. [Left] Evolution of Average of the Optical Path Difference distribution (OPD avg) and confluency. Mean value for 
three wells ± standard deviation. [Right] Illustrative phase images acquired by DHM of RBCs treated with 0.5, 2.5 or 10 mM 
diamide at three time points, with zoom on a random RBC. 

 

The response of the RBCs to the diamide treatment was proportional to the concentration tested 

(Figure 11). Higher diamide concentrations shortened the lag time. All RBCs in the sample responded 

in a synchronized manner to the treatment. The amplitude of the change was comparable for all 

conditions with similar maximum (spherocytes formation) and minimum (complete cell lysis) OPD avg 

values. However, after reaction onset, the duration of the process, i.e. membrane destabilization, 

spherocyte formation and hemolysis, was inversely proportional to the diamide concentration because 

RBCs treated with lower oxidant concentrations resisted longer. The overall process was also reflected 

by the confluency parameter that decreased first because of spherocytosis (reduction of the projected 

area) and then because of the hemolysis. 

Several quantitative parameters that could serve as output data for the TSOX assay were 

extracted from the OPD avg and confluency curves, i.e. the lag time, time to Max, cross-control time, 

time to Min and AUC (Figure 12). 
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Figure 12 – Quantitative analysis of the morphological changes triggered in red blood cells by different concentrations of 

diamide. [Left] Illustrations of the selected analysis parameters for Average of the Optical Path Difference distribution (OPD 
avg) and confluency curves. [Top box] Area Under the Curve (AUC) and Time-related, i.e. Lag time (Lag T.), Time to Max (T. to 
Max), Cross-control time (Cross-ctrl T.) and Time to Min (T. to Min) calculated from the Average of the OPD avg curves 
presented in Figure 11. [Bottom box] AUC and Time-related, i.e. Lag time (Lag T.) and Time to Min (T. to Min) calculated from 
the confluency curves presented in Figure 11. Mean value for three wells ± standard deviation. 

 

The time-related values were not reported when the curves are flat such as for the control and the 

oxidant concentrations that are too low to induce quantifiable morphologic alterations within the 

timeframe of the experiment. It does not mean that nothing happened. Indeed, response to 0.5 mM 

diamide was comparable to control with DHM readout, whereas fluorescence was detected. Each 

parameter varied proportionally to the oxidant concentration, at the exception of the AUC of OPD avg 

that did not decrease when oxidant concentration increased. 

Finally, various concentrations of AAPH were tested (Figure 13). Interestingly, not all the RBCs 

in the sample responded at the same time to the treatment, explaining why the maximal OPD avg 

value was lower in comparison to the diamide treatment. Again, the changes observed were 

proportional to the AAPH concentration. 
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Figure 13 – Morphological changes triggered in Red Blood Cells (RBCs) by different concentrations of 2'-Azobis(2-

amidinopropane) dihydrochloride (AAPH). Timelapse analysis by Digital Holographic Microscopy (DHM) of morphological 
changes under 0, 1, 2.5, 5, 7.5 or 10 mM AAPH treatment. [Left] Evolution of Average of the Optical Path Difference distribution 
(OPD avg, top) and confluency (bottom). Mean value for three wells ± standard deviation. [Right] Illustrative phase images 
acquired by DHM of RBCs treated with 1, 5 or 10 mM AAPH at three time points, with zoom on a random RBC. 

 

The AUC, Time to Max and End-point parameters could be used for the quantitative analysis of 

oxidative stress induced by AAPH (Figure 14). The main differences were observed with the End-point 

parameter allowing the comparison to any concentrations. 
 

 
Figure 14 – Quantitative analysis of the morphological changes triggered in red blood cells by different concentrations of 

2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). [Left] Illustrations of the selected analysis parameters for Average of 
the Optical Path Difference distribution (OPD avg) and confluency curves. [Top box] Area Under the Curve (AUC), Lag time 
(Lag T.), and End-point calculated from the OPD avg curves presented in Figure 13. [Bottom box] AUC and End-point calculated 
from the confluency curves presented in Figure 13. Mean value for three wells ± standard deviation. 
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TSOX development: identification of antioxidant molecules 

The second step in the TSOX assay development was to demonstrate its ability to effectively detect 

antioxidant molecules. To do so, various compounds with proven antioxidant properties were used as 

positive controls. Again, both the fluorescence and morphology readouts were tested. 

Fluorescence readout: proof-of-concept with a “miniscreen” of known antioxidants 

To validate the TSOX assay using fluorescence as readout, a “miniscreen” was conducted to test the 

well-known AA, UA, Trolox (water-soluble analog of vitamin E) and resveratrol (natural polyphenol) 

antioxidants. The pipeline of the experiment is pictured out in Figure 15. 
 

 
Figure 15 – Analysis workflow for the identification of antioxidant molecules using fluorescence readout. Red blood cells 
treated with the 2',7'-Dichlorofluorescin Diacetate (DCFH-DA) probe are plated in a multiwell imaging plate and treated with 
the molecules of interest during 60 min. Then hydrogen peroxide (H2O2), diamide or 2,2'-Azobis(2-amidinopropane) 
dihydrochloride (AAPH) are added. A fluorometer is used to quantify the fluorescence emitted which increases when 
intracellular reactive oxygen species are generated. 

 

RBCs were taken from an RCC, treated with DCFH-DA probe and 180 µL of 1 % HCT RBC sample were 

loaded per well in a 96-well plate. Then the molecules to analyze were added at three different 

concentrations, i.e. 0, 10, 100 or 1000 µM (2 wells/condition). The antioxidant stock solutions (20x) 

were prepared at 20 mM and diluted at 2 and 0.2 mM in 0.9 % NaCl. AA was dissolved in 0.9 % NaCl, 

UA in 0.9 % NaCl plus 0.07 % NH3 (37 µM), Trolox and Resveratrol were solubilized in 100 % DMSO. 

Consequently 1.85 µM NH3 was used as control for UA, and 5% DMSO for Trolox and Resveratrol. The 

RBCs were treated with 10 µL of antioxidants and incubated at 37°C during 60 min before addition of 

the oxidant. After that, 10 µL of 20x oxidant stock solution prepared in 0.9 % NaCl were added. In 

addition to the control, two concentrations were tested for each oxidant, i.e. 250 and 1000 µM AAPH 

and diamide, and 0.0001 and 0.001 % H2O2. Fluorescence was recorded overnight (590 min from 

oxidant addition) in the Fluoroskan fluorometer, the plate was kept at 37°C. The experiment was 

repeated for three consecutive days using the same RCC stored for three, four and five days of storage. 

The first day, the oxidative stress was induced with AAPH, the second with diamide and the third with 

H2O2. The difference in storage was negligible since the metabolism variations are equivalent in this 

phase of the storage (see Chapter 1). 

The results for the three experiments, which aimed to analyze the effects of four antioxidants 

at three concentrations against three oxidants at two concentrations are presented in Figure 16. 

reactivity has been successfully tested both in phosphate buffer
saline solution and inside HeLa cells.

MATERIALS AND METHODS

Materials. 6″-Carboxy-20,70-dichlorodihydrofluorescein diacetate was
supplied by Santa Cruz Biotechnology (Dallas, USA). Hypericin (Hyp)
was purchased from HWI Analytik GmbH (Ruelzheim, Germany).
Ampicillin, tetraethyl orthosilicate (TEOS), cetyltrimethylammonium
chloride solution (25 wt% in H2O; CTAC), 3-(triethoxysilyl)propyl
isocyanate, 4,7,10-trioxa-1,13-tridecanediamine, N-(3-dimethylamino-
propyl)-N0-ethyl-carbodiimide hydrochloride (EDC), N-hydroxysuccini-
mide (NHS), sodium hypochlorite solution (NaClO; 140 lM), hydrogen
peroxide (H2O2, 30% w/v), potassium superoxide (KO2), methylene blue
(MB), Dulbecco’s phosphate-buffered saline (PBS), L-arabinose and
bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St.
Louis, USA) and used as received. Absolute ethanol, acetonitrile,
trichloroacetonitrile, dichloromethane and hydrochloric acid solution (37
wt% in H2O; HCl) were supplied by Panreac (Barcelona, Spain). B-PER
cell lysis reagent was purchased from Thermo Fisher (Waltham, USA).

The linker N-(4,7,10-trioxa-13-tridecaneamine)-N0-(3-(triethoxysilyl)
propyl)-urea ((EtO)3-Si-L-NH2) was synthetized as described in reference
(30). Mesoporous silica nanoparticles (MSNP) and linker-attached meso-
porous silica nanoparticles (MSNP-L-NH2) were synthetized as described
in references (30,32).

Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g L!1 glu-
cose, fetal bovine serum (FBS), 200 mM l-glutamine and penicillin
(10 000 units mL!1)-streptomycin (10 mg mL!1) solution were supplied
by Lonza (Basel, Switzerland). Trypsin-EDTA solution and Hanks’ bal-
anced salt solution with Ca2+ and Mg2+ (HBSS+) were supplied by
Sigma-Aldrich (St. Louis, USA), and WST-1 was supplied by Roche
Diagnostics (Mannheim, Germany). Human HeLa cervix adenocarcinoma
cells were from American Type Culture Collection (ATCC CCL-2,
Manassas, USA). The cell culture material was supplied by LabClinics
S.A. (Barcelona, Spain).

Conjugation of DCFH-DA onto MSNP-L-NH2 . DCFH-DA
conjugation to MSNP-L-NH2 was performed through Steglich amidation
adapting the procedure proposed by Neises and Steglich (33). Briefly,
4.0 mg (7.5 lmol) of DCFH-DA was previously activated by mixing
them for 2 h with 14.7 mg of EDC (77 lmol) and 14.5 mg (126 lmol)
of NHS in 2 mL of dry CH2Cl2. The mixture was then added dropwise
to 14 mL of a stirred solution of MSNP-L-NH2 in acetonitrile
(7 mg mL!1), and the crude was kept reacting for 72 h in darkness and
at room temperature. Simultaneously, 0.5 g (5 mmol) of anhydrous
Na2CO3 was added in order to deprotonate linker’s amino-terminal
groups, since the amidation is not favorable with the protonated form.
Afterward, nanoDCFH-DA was centrifuged and washed six times with
ethanol (20 min at 17 877 g).

Physical and chemical characterization of MSNPs. Size and f-
potential of the synthesized MSNPs were measured using a Nano-ZS
Zetasizer equipment (Malvern Instruments Ltd, Worcestershire, UK). For
size determination, a 0.1 mg mL!1 aliquot in ethanol was measured. For
f-potential examination, a 0.1 mg mL!1 aliquot in milli-Q water or
acidic/basic water was measured.

Infrared spectra of the MSNPs supported on a potassium bromide disk
were recorded using a Nicolet Magna 560 FTIR spectrophotometer
(Thermo Fisher Scientific, Waltham, USA).

Organic elemental analysis of the NPs was carried out in a EURO
EA-3000 Elemental Analysis system (Eurovector, Pavia, Italy). The
concentration of amino groups (cNH2 ) in MSNP-L-NH2 was deter-
mined as the amount of nitrogen in the NPs divided by 3 on account
that each linker unit contains three nitrogen atoms. Since DCFH-DA
contains no nitrogen, comparison the carbon/nitrogen ratio in
nanoDCFH-DA relative to MSNP-L-NH2 allowed to calculate the
fraction of amino groups functionalized by the probe and therefore
the concentration of DCFH-DA on the nanoparticles.

Sources of ROS. ClO! and H2O2 were added from stock solutions.
O"!

2 was added as a suspension of solid KO2 in anhydrous CCl3CN
(140 mM).˙OH was generated by UV-A irradiation (353 # 20 nm;
6.3 mW cm!2) of a NaNO2 solution (1 mM) (34). 1O2 was generated by
irradiation of a 8.7 lM methylene blue solution with red light
(634 # 8 nm; 7.8 mW cm!2) (35).

Determination of reactive rate constants. Samples of DCFH-DA or
nanoDCFH-DA were exposed to different concentrations of oxidizing
agents, and the ensuing fluorescence increase was used to calculate the
corresponding reactive rate constants. For stable species (ClO!, O2˙

! and
ground-state O2), the method of initial rates was employed. For ˙OH and
1O2, a comparative method was used instead using terephthalic acid as a
reference acceptor for ˙OH (5.3 lM, rate constant 4.4 9 109 M

!1 s!1)
(36) and ADPA as a reference acceptor for 1O2 (1.5 lM, rate constant
8.7 9 107 M

!1 s!1) (37). Details of the methods are given in
Appendix S1 of the Supporting Information file.

Fluorescence measurements. The fluorescence of the nanoprobe and
molecular probe was studied in PBS at the DCFH-DA concentration of
1.5 lM using a FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon,
Edison, USA). Samples were exposed to known amounts of the different
ROS after deacetylation by NaOH treatment and subsequent
neutralization with sulfuric acid (20 mM).

HeLa cells culture. Human carcinoma HeLa cells were grown as
monolayer cultures in DMEM supplemented with 10% (v/v) FBS, 1% (v/
v) penicillin-streptomycin solution and 1% (v/v) l-glutamine. Cells were
cultured in an incubator with 5% CO2 plus 95% air at 37°C. Cells were
seeded in 75-cm2

flask, and subconfluent cell cultures were used.
Viability assay. To evaluate the possible cytotoxicity of nanoDCFH-

DA, the viability of HeLa cells was measured by the WST-1 test
(Roche Diagnostics, Mannheim, Germany). HeLa cells were seeded in
96-well plates at 5000 cells well!1 for 48 h and then exposed to 0.5,
1 and 2 lM of nanoDCFH-DA diluted in HBSS+ for 24 h. Finally,
the cell culture medium was removed and 100 lL well!1 of WST-1
(1:10 dilution) was applied. After 2 h, absorbance was read at
450 nm.

Cell preparation procedure for microscopical analysis. HeLa cells
were seeded in 8-well plates at 5.000 cells well!1 for 24 h. Then, the
cell culture medium was removed and 250 lL well!1 2 lM nanoDCFH-
DA diluted in HBSS+ with and without 10 lM Hyp was added and left
under incubation for 2 h. The cell culture was washed three times with
200 lL well!1 HBSS+ in order to discard the non-internalized suspended
nanoDCFH-DA. Finally, 250 lL well!1 HBSS+ was added before the
microscopical analysis.

Scheme 1. Oxidation of DCFH-DA by ROS.
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For analysis, the AUC was calculated, as before using PRISM software, baseline fluorescence was 

assumed to be null (Figure 17). 
 

 
Figure 17 – Analysis of the results obtained during the “Miniscreen with the TSOX assay”. The Area Under the Curve (AUC) 
was calculated from the fluorescence curves presented in Figure 16. Mean value for two wells ± standard deviation. 

 

The “no oxidant” controls (0 µM AAPH, 0 µM diamide and 0 % H2O2 controls) are presented in the first 

column of graphics. They can serve as a reference to compare the different experiments. As seen 

before, fluorescence raised even without exogenous oxidant addition, because of the incubation 

conditions that elicited spontaneous ROS generation. In such case, the protective effect of AA, Trolox 

and resveratrol was already quantifiable, excepted for UA that even further exacerbated the oxidative 

stress. 

As expected, the global fluorescence was correlated to the amount of oxidant added in the 

“no antioxidant” controls (0 µM AA, 0 µM UA, 0 µM Trolox and 0 µM resveratrol, corresponding to the 

bar with shaded color). It seems that the solvent used for the dissolution of the antioxidants impacted 

the sensitivity of the RBCs to the oxidants. Indeed, the 5 % DMSO in the Trolox and resveratrol controls 

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0

1×105

2×105

3×105

AOX concentration / µM

A
U

C
 / 

A
.U

.*m
in

0 µM
AA
UA
Trolox
Resveratrol

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0.0

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

AOX concentration / µM

A
U

C
 / 

A
.U

.*m
in

0 µM
AA
UA
Trolox
Resveratrol

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0.0

5.0×104

1.0×105

1.5×105

AOX concentration / µM

A
U

C
 / 

A
.U

.*m
in

0 %
AA
UA
Trolox
Resveratrol

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0

1×105

2×105

3×105

AOX concentration / µM

250 µM

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0.0

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

AOX concentration / µM

250 µM

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0.0

5.0×104

1.0×105

1.5×105

AOX concentration / µM

0.0001 %

1000 µM

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0

1×105

2×105

3×105

AOX concentration / µM

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0.0

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

AOX concentration / µM

1000 µM

0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00 0 1010
0
10

00
0.0

5.0×104

1.0×105

1.5×105

AOX concentration / µM

0.001 %

A
A

PH
D

ia
m

id
e

H
2O

2



 CHAPTER 4  136 

and even more the 1.85 µM NH3 UA control samples increased the amount of ROS generated when 

compared to the 0 µM AA control, only composed of 0.9 % NaCl. 

Within the experiment timeframe, addition of 10 µM, 100 µM and 1000 µM AA fully protected 

the RBCs from 250 µM AAPH. It is not certain that the signal would not have increased if the experiment 

had been prolonged. For the 1000 µM AAPH treatment, 10 µM AA was not sufficient, but delayed the 

onset of the reaction. AA was less potent against diamide for the same concentrations tested but was 

protective against 0.0001 and 0.001 % H2O2. UA was not effective against AAPH, diamide or H2O2 and 

even worsened the situation, which confirms that it can function as a pro-oxidant. It could explain why 

the addition of this molecule in the RCCs did not improved the aging markers of the RBCs in the first 

part of Chapter 3. It is important to mention that the apparent protective effect of 1000 µM Trolox 

treatment (lower AUC) was in fact related to RBC hemolysis. This phenomenon was visible by eye on 

the plate (brown color). Finally, resveratrol also limited the production of ROS. The kinetic analysis 

shows that this compound lowered the maximum of fluorescence (plateau value) and also modified 

the initial slopes of the curves (rate of ROS generation), either suggesting that resveratrol is a direct 

antioxidant, but could also indicate that this molecule induces cell lysis. 

Morphology readout: proof-of-concept with ascorbic acid and uric acid antioxidants 

Proof-of-concept experiments were also conducted to demonstrate that the TSOX could be coupled to 

the DHM readout to detect antioxidants (Figure 18). Hence, the protective effect of AA combined with 

UA against diamide and AAPH oxidants was assessed. These two molecules have already been tested 

in pair in Chapter 3, Part 1.2. 
 

 
Figure 18 – Analysis workflow for the identification of antioxidant molecules using Digital Holographic Microscopy (DHM) 

readout. Red Blood Cells (RBCs) are plated in a multiwell imaging plate and treated with the molecules of interest during 60 
min (e.g. Ascorbic Acid plus Uric Acid [AA-UA]). Then diamide or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) are 
added. The DHM is used to quantify the changes of RBC morphology. 

 

For the first experiment, RBCs were treated with 113.7 µM AA plus 416.3 µM UA (plasma levels) and 

oxidized with 0, 1, 2 or 5 mM diamide (three wells per condition). To do so, RBCs were taken from an 

RCC (stored 2 days under standard conditions), washed 2x in 0.9 % NaCl and diluted in HEPA at a final 

concentration of 8.89×108 RBC/L. The cells were treated in tube with the antioxidants or control SAGM. 

The AA-UA stock solution (26x) was prepared by solubilizing first AA in SAGM (at 3.0 mM) and then UA 

DHM

37°C, 5% CO2

AA-UA antioxidant

Diamide / AAPH oxidant

60 min
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(at 10.8 mM) in the AA-SAGM solution, 1/500 volume of 28 % NH3 was added to favor UA dissolution. 

Immediately after supplementation of the antioxidants, 90 µL of sample were dispensed per well 

(80’000 RBCs/well) in a 96-well poly-L-ornithine coated imaging plate. The plate was placed in the DHM 

incubation chamber during 60 min and images were taken each 15 min. Finally, the RBCs were treated 

with 10 µL of diamide stock solution (10x) or control 0.9 % NaCl, i.e. 0, 1, 2 or 5 mM diamide final and 

again incubated at 37°C for timelapse analysis during 479 min (images acquisition each 15 min). 
 

 
Figure 19 – Assessment of protection provided by the Ascorbic Acid plus Uric Acid (AA-UA) antioxidant pair against diamide 

oxidant using TSOX assay with digital holographic microscopy readout. Timelapse analysis of morphological changes 
triggered by 0, 1, 2 or 5 mM diamide treatment and 113.7 µM AA plus 416.3 µM UA. [Top] Evolution of Average of the Optical 
Path Difference distribution (OPD avg) and confluency. [Bottom] Area Under the Curve (AUC) calculated from the OPD avg or 
confluency curves. Mean value for three wells ± standard deviation. 

 

The addition of the antioxidants did not changed the lag-time (onset of the reaction), at least with 5 

mM diamide, but improved the resistance of the RBCs to the oxidant (retarded spherocytosis and 

hemolysis, Figure 19). The AUC calculated for both the OPD avg and confluency were significantly 

different between RBCs treated or not with antioxidants for the three concentrations of diamide. It 

must be emphasized that for the OPD avg, other analysis parameters such as the “Time to Max” or 

“Cross-control time” could have been more instructive, and that the “end-point” value would also have 

been interesting for analysis of the confluency. 
 

0 100 200 300 400 500

404 min

60

100

140

180

220

Time / min

O
PD

 a
vg

 / 
nm

Ctrl - 0 mM diamide
Ctrl - 1 mM diamide
Ctrl - 2 mM diamide
Ctrl - 5 mM diamide
AA-UA - 0 mM diamide
AA-UA - 1 mM diamide
AA-UA - 2 mM diamide
AA-UA - 5 mM diamide

0 100 200 300 400 500

404 min

0.0

0.5

1.0

1.5

Time / min

C
on

flu
en

cy
 (n

or
m

al
iz

ed
)

Ctrl - 0 mM diamide
Ctrl - 1 mM diamide
Ctrl - 2 mM diamide
Ctrl - 5 mM diamide
AA-UA - 0 mM diamide
AA-UA - 1 mM diamide
AA-UA - 2 mM diamide
AA-UA - 5 mM diamide

Ctrl

AA-U
A

Ctrl

AA-U
A

Ctrl

AA-U
A

Ctrl

AA-U
A

6.0×104

6.5×104

7.0×104

7.5×104

8.0×104

A
U

C
 / 

nm
*m

in 0 mM diamide

1 mM diamide

2 mM diamide

5 mM diamide

Ctrl

AA-U
A

Ctrl

AA-U
A

Ctrl

AA-U
A

Ctrl

AA-U
A

300

350

400

450

500

A
U

C
 / 

co
nf

lu
en

cy
*m

in

0 mM diamide

1 mM diamide

2 mM diamide

5 mM diamide

OPD avg Confluency

AUC OPD avg AUC confluency



 CHAPTER 4  138 

 
Figure 20 – Antioxidant treatment (i.e. Ascorbic Acid plus Uric Acid [AA-UA]) reduces the morphological changes triggered 

by diamide. Illustrative phase images acquired by digital holographic microscopy of red blood cells treated with 0, 1, 2 or 5 
mM diamide and then without [top] or with 113.7 µM AA plus 416.3 µM UA [bottom] after 404 min of incubation. The images 
were taken during the timelapse analysis presented in Figure 19. 

 

When looking at the phase images (e.g. after 404 min of analysis), differences of morphology were 

visible between RBCs treated or not with the antioxidants (Figure 20). At this time, all control RBCs 

were already transformed into spherocytes while discocytes and echinocytes were still visible in the 

AA-UA sample under treatment with 2 mM diamide. With 5 mM diamide, all the RBCs already became 

spherocytes and began to lyse. Hemolysis occurred earlier and faster in the control versus AA-UA 

sample. 

In a second experiment, the protective effect of the same pair of molecules, was evaluated 

when the oxidative stress was triggered by 10 mM AAPH. To do so, RBCs (RCC stored for three days) 

were prepared as before and treated in tube with different concentration of antioxidants, i.e. 0, 1, 2.5, 

5, 7.5, 10, 25, 50, 75, 100 or 200 % AA-UA, the 100 % concentration corresponding to a treatment with 

113.8 µM AA plus 415.1 µM UA (plasmatic levels). The RBCs were pre-incubated with the antioxidants 

during 60 min in the incubation chamber set at 37°C, 5 % CO2 and high humidity, before treatment 

with 10 mM AAPH. In total, the RBCs were analyzed during 990 min. 
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Figure 21 – Assessment of protection provided by the Ascorbic Acid plus Uric Acid (AA-UA) antioxidant pair against 2,2'-

Azobis(2-amidinopropane) dihydrochloride (AAPH) oxidant using TSOX assay coupled to digital holographic microscopy 

readout. Timelapse analysis of morphological changes triggered by 0 or 10 mM 2,2'-Azobis(2-amidinopropane) 
dihydrochloride (AAPH) treatment and 0, 1, 2.5, 5, 7.5 10, 75, 50, 100 or 200 % of AA-UA antioxidant pair (100 % corresponding 
to 113.8 µM AA plus 415.1 µM UA). [Top] Evolution of Average of the Optical Path Difference distribution (OPD avg) and 
confluency. [Bottom] Area Under the Curve (AUC) calculated from the OPD avg or confluency curves. Mean value for three 
wells ± standard deviation. 

 

Without antioxidants (i.e. 0 %), the morphology was rapidly affected by AAPH oxidation (Figure 21), 

whereas with antioxidants the drop of OPD avg and confluency was shifted to the right proportionally 

to the percentage added. Such effect was reflected by the AUC analysis parameter (baseline at 0 nm). 
 

 
Figure 22 – Antioxidant treatment (i.e. Ascorbic Acid plus Uric Acid [AA-UA]) reduces the morphological changes triggered 

by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). Illustrative phase images aquired by digital holographic 
microscopy of red blood cells treated with 10 mM AAPH and 0, 5, 10, 50 or 100 % of AA-UA antioxidant pair (100 % 
corresponding to 113.8 µM AA plus 415.1 µM UA) after 600 min of incubation. The images were taken during the timelapse 
analysis presented in Figure 21. 

 

The observation of the phase images confirmed that antioxidant treatment slowed down the effect of 

AAPH on RBC morphology (Figure 22). A 10 %-supplementation already partly preserved the RBCs and 

a 100 %-supplementation clearly preserved the cell morphology. 
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Various applications for the TSOX assay 

More than only being a tool for HTS, the TSOX can be useful for a large panel of applications such as 

the monitoring of the oxidative lesions in the framework of RCC storage (see Chapter 3 Part 1.2). In 

the context of drug discovery, the TSOX could also be used in the primary screen to provide detailed 

information about a hit, such as its dose-response activity. 

As an example, the suitability of the TSOX for determination of an EC50 was tested for AA 

antioxidant against 10 mM AAPH oxidant (arbitrarily fixed) using changes of morphology as readout. 

Samples were taken from 3 RCCs at day three of storage. The RBCs were prepared as usual for DHM 

analysis and were treated in tube with 0, 0.25, 0.5, 1, 2, 3, 5 or 7 mg/dL AA (which corresponds to 0, 

14.2, 28.4, 56.8, 113.6, 170.5, 284.1 or 397.7 µM AA). Immediately after antioxidant addition, the cells 

were plated and incubated 60 min before addition of 10 mM AAPH or control 0.9 % NaCl. The evolution 

of morphology was followed during approximatively 19 hours (at 37°C and 5 % CO2). 
 

 
Figure 23 – Determination of dose-response activity of Ascorbic Acid (AA) antioxidant against 2,2'-Azobis(2-

amidinopropane) dihydrochloride (AAPH) oxidant using TSOX assay coupled to digital holographic microscopy readout. 
Timelapse analysis of morphological changes triggered by 0 or 10 mM AAPH and 0, 0.25, 0.5, 1, 2, 3, 5 or 7 mg/dL AA (which 
corresponds to 0, 14.2, 28.4, 56.8, 113.6, 170.5, 284.1 or 397.7 µM) in three Red Cell Concentrates (RCCs). Evolution of Average 
of the Optical Path Difference distribution (OPD avg, left) and confluency (right). Mean value for three wells ± standard 
deviation. 
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Without AA (0 mg/dL AA), the RBCs began to lyse after 510 min for RCC 1 and 2 and after 450 min for 

RCC 3, all RBCs disappeared after 720 min for RCC 1 and 2 and 630 min for RCC 3 (Figure 23). As before, 

addition of an antioxidant modified the effect of AAPH. For the smallest concentrations, i.e. 0.25, 0.5, 

and 1 mg/dL, AA only delayed the reaction which could indicate that the antioxidant was exhausted 

before total elimination of the oxidant. Then, higher concentrations progressively prevented hemolysis 

(increase of end-point OPD avg and confluency values), suggesting that the protection level became 

sufficient to protect the RBCs upon complete degradation of all AAPH molecules. 

Prism software was used to compute the AUC analysis parameter, and then to fit the dose-

response curve in order to report the EC50 value, i.e. the antioxidant concentration that provides half-

maximal protection (response halfway between the baseline and maximum values). The PRISM 

equation that was selected for fitting is defined as the “[Agonist] vs. response – Variable slope (four 

parameters) equation”. 
 

 
Figure 24 – EC50 values for Ascorbic Acid (AA) against 10 mM 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH). Fitted 
Area Under the Curve (AUC) values calculated from the Average of the Optical Path Difference distribution (OPD avg) or 
confluency curves presented in Figure 23. Mean value for three wells ± standard deviation. [In frame] Best-fit EC50 values for 
AA antioxidant against 10 mM AAPH oxidant for the three Red Cell Concentrates (RCCs). 

 

The AUC computed for both OPD avg and confluency parameters was plotted in Figure 24. The selected 

model fitted well the data with R2 of 0.991, 0.995 and 0.989 for RCC 1, 2 and 3 AUC of OPD avg, and of 

0.965, 0.991, 0.984 for the AUC of confluency of RCC 1, 2 and 3, respectively. Moreover, the fittings as 

well as the best-fit EC50 values were comparable for the three RCCs. 
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CONCLUSIONS AND PERSPECTIVES 

The aim of this chapter was to show the process followed for the development of the test of sensitivity 

to oxidation, coined TSOX, that aim to become a tool to monitor and quantify the impact of oxidation 

on RBCs based on ROS quantification and morphology changes. 

The three oxidants tested, namely H2O2, diamide and AAPH could be proposed for the TSOX 

assay using DCFH-DA fluorescent signal as an output, whereas for the DHM, only diamide and AAPH 

produced quantifiable changes of RBC morphology. The preliminary results suggested that H2O2 would 

not enable robust, reproductive and sensitive identification of hit molecules, necessary for an HTS-

compatible assay. Higher concentrations of oxidant had to be used for the experiments with DHM 

compared to fluorescence. It is certainly because the label-free DHM imaging technique provides 

quantitative data about the phenotypic changes yielded by a compound and thus an indication of the 

consequences of a particular treatment, whereas DCFH-DA fluorescence enables straightforward 

quantification of the ROS generated. 

The kinetic rates were close for both analysis technics and were in accordance with the 

mechanism of action of each oxidant. Hence, H2O2 that is by itself a physiologic ROS and a highly 

reactive species almost immediately produced its effect, leading to a sudden increase of fluorescence 

and OPD signals. For its part, a lag time was observed with diamide. It is probably because this thiol 

oxidant does not directly generate ROS but perturbs the cell redox balance by depleting glutathione. 

Diamide was also shown to induce structural changes of spectrin, a major constituent of the RBC 

cytoskeleton, and reduced its ability to bind protein 4.117, which could explain the major structural 

alterations observed. Finally, the AAPH known to degrade into peroxyl radicals at a constant rate, 

generated a linear increase of fluorescence and a progressive effect on RBC morphology. 

Then, proof was given that potent antioxidants will indeed be detected by the TSOX and 

therefore that this assay is suitable for screening campaigns as well as robust enough the 

determination of dose-response curves as shown by the obtained data. Fluorescence analysis turned 

out to be a sensitive and convenient readout to have a quick glance at the antioxidant properties of 

molecules. Its major limitation was that it only provided a bulk picture of what happens at the level of 

the RBC population within the entire well. Moreover, it is a relatively “blind” method of analysis and is 

thus prone to be biased. For example, in an HTS including only fluorescence as readout, Trolox that 

triggers RBC lysis would have certainly be taken for a hit (false positive), as it reduces the fluorescence. 

With DHM, such side effect would have been more easily detected. It is the reason why, DHM is 

certainly a valuable throughput method. However, it has the disadvantage, similarly to other image-

based methods to generate large amounts of data, and that the assessment of single-cell phenotype 

can necessitate a lot of time and resources (human and computer). 
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A multitude of assay designs and parameters for a broad range of applications 

The design of the TSOX assay can be easily modulated to answer a particular question. Indeed, the 

different steps can be arranged and combined in multiple ways. Possible assay designs are presented 

in Figure 25. 
 

 
Figure 25 – Non-exhaustive presentation of the possible designs for the “TSOX” assay. 

 

The Design A can be used to test the protective role of the molecules. It is the most straightforward 

design for HTS as it simply consists in treating the cells and apply simultaneously the oxidative stress 

without washing the cells in between. The Design B can provide information about the rejuvenation 

properties of a compound. To do so, the RBCs are first exposed to the oxidants and then put in contact 

with the molecules to see if one of them could potentially rescue some reversible oxidative damages. 

A washing step can be added. However, such experimental design is hardly applicable for the HTS with 

RBCs as it is almost impossible to wash non adherent cells in multi-well plates. It will thus require 

performing the first treatment in tubes. Finally, the Design C can serve as determining the preventive 

role of the molecules. For that the RBCs are incubated with the compounds to test before the oxidation 

step. Again, a washing step can be included in between, with the same constraints. The molecules that 

give a positive result in such situation will be those that are incorporated within the cells and exhibit a 

direct antioxidant effect intracellularly or those that provide an indirect protection via the activation 

of the endogenous antioxidant system. 

 In addition to the various possible designs, each individual parameter of the TSOX assay can 

be modified and adjusted to best meet the needs. For example, rather than using a single oxidant, 

combination of multiple oxidants with distinct properties could be interesting to best mimic complex 

environments. Other types of oxidants with distinct mode of action could also be included such as the 

liposoluble cumene hydroperoxide (CumOOH) that targets preferentially the inner part of the 

membrane lipid bilayer and causes lipid peroxidation. Similarly, the 2,2'-azobis(2,4-

dimethylvaleronitrile) (AMVN) is a lipophilic azo compound that generates at constant rate radical 

formation within the lipid environment. Even the readout can be optimized. Indeed, multiple detection 
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reagents are available to detect a large variety of ROS. For example, preliminary tests were conducted 

using the BODIPY18 probe to sense lipid peroxidation induced by CumOOH (data not shown). 

TSOX for high-throughput screening 

After designing and optimization, the next step in the assay development workflow will be to validate 

statistically the assay by calculating for example the Z’-factor. This parameter is widely used in assay 

development to determine if the difference observed between positive and negative controls is large 

enough to guarantee the reliability, robustness and significance of an assay. This dimensionless value 

was proposed by Zhang et al. in 199919 is defined as (Equation 1): 
 

!" = 1 − ('	)*+,'	)*-)
|012+3012-|

  Equation 1 

 

where SD+ and SD- and Ave+ and Ave- represent the standard deviations and averages for the positive 

and negative controls, respectively. The categorization of the assay is the following: if Z’ is almost 1 the 

assay is ideal with a huge dynamic range and no standard deviation. When Z’ is comprised between 

0.5 and 1 the assay is good, and it is poor/marginal between 0 and 0.5. If the Z’=0, the assay only 

provides a yes or no answer. Below 0, the screening is not applicable, because the signals from the 

positive and negative controls are possibly overlapped. 

Finally, the assay will have to be automatized, maybe miniaturized and again validate in final 

conditions. After that, a pilot screen can be launched. In the near future, it is planned to the TSOX to 

screen the library of natural products (NPs) extracts available at the biomolecular screening facility 

(BSF) of the Ecole Polytechique Fédérale de Lausanne (EPFL, Lausanne, Switzerland). This library 

provided by Analyticon - InterBioscreen contains 2’654 organic molecules purified from plants and 

bacteria. 

 In conclusion, the data presented in this Chapter showed that the TSOX is a promising tool to 

determine the antioxidant properties of various compounds and answer a broad range of questions 

using one or both readout methods, i.e. fluorescence and morphology analyses provide 

complementary information. Currently, final developments and validation for the TSOX assay are 

ongoing. It is also planned to use artificial intelligence (AI) in a close future for the automated on-line 

analysis of the phenotypic changes triggered by a treatment. 

 The roles of such assay are multiple. They can provide information for the development of 

additive solutions and other storage strategies in blood banking in order to improve RBC storage and 

transfusion medicine. Moreover, links between metabolic pathways and cell morphology can be 

investigated. The use of different TSOX designs and strategies will be useful to decipher the modes of 

action of toxic or protective molecules. In a close future, the use of the AI for the RBC morphology 

classification. 
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CONTEXT 

In Switzerland, blood and blood-derived products are regarded as drugs, and are thus under the 

control of Swissmedic, i.e. the Swiss agency for therapeutic products. Like any treatment, blood 

transfusion implies risks which must be minimized as much as possible using methods that are 

economically justified (e.g. in terms of Quality-Adjusted Life Year [QALY]). 

Today, the risk versus benefit ratio of blood transfusion is still positive, and lives are saved 

everyday thanks to the latter. Recently, however, the scientific community raised the question of 

negative effects associated with the transfusion of long-term stored Red Cell Concentrates (RCCs)1. 

So far, no consensus has been reached on whether RCCs stored for a long period of time can be 

dangerous to transfused patients, and recent clinical trials are reassuring regarding standard 

practices2,3. It is clear, however, that the properties of Red Blood Cells (RBCs) within RCCs are 

changing over time4–6. In particular, their efficiency for oxygen perfusion and their circulation lifetime 

after transfusion are affected. 

 Changes that occur ex vivo are reversible, such as the metabolic reprogramming which likely 

begins right after (or even during) blood collection, and provides a starting point for the avalanche of 

lesions appearing afterward7. Lesions to the metabolism include the early loss of 2,3-

Diphosphoglycerate (2,3-DPG), the accumulation of lactate, a drop in pH and an ion unbalance (K+, 

Ca2+, Fe3+, etc.). Next, oxidative lesions which are often irreversible accumulate due to an increase in 

oxygen saturation within RCC units8,9, and to reductions in antioxidant defenses (after removal of the 

plasma, which contains antioxidant molecules, and the loss of reduced Nicotinamide Adenine 

Dinucleotide Phosphate [NADPH], reduced Nicotinamide Adenine Dinucleotide [NADH], reduced 

Glutathione [GSH], and Uric Acid [UA] metabolites). Oxidative lesions appear at the level of 

proteins10,11 (e.g. sulfenic acid and carbonylation12,13), triggering their degradation, dimerization (e.g. 

band 3), and delocalization to the membrane (e.g. Peroxiredoxin 2 [Prx 2]14 or denatured hemoglobin 

[Hb])15. Lipids are also progressively oxidized. Finally, the cell phenotype and functions are affected: 

aged RBCs present senescence markers such as phosphatidylserine, which release microvesicles 

(MVs)16,17 and change their shape (from stomatocytes/discocytes to echinocytes, and finally 

spherocytes)18,19. Such markers lead to a reduction in RBC deformability20, and finally to hemolysis. 

Once transfused, irreversible lesions affecting RBCs make them more likely to be removed from 

circulation in transfused recipients, while reversible lesions delay the efficiency of transfused RBCs. 

 The above changes can be attributed in part to the donor itself, in part to blood collection 

and processing, which are likely causes of cellular stress (mechanical constraints, temperature 

variations, anticoagulant addition, etc.), and mostly to storage conditions themselves, which are not 
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physiological: lower temperature, surrounding plastic bag, static conditions, closed environment 

allowing only gas exchanges, and the adapted, though still non-physiological, additive solution. 

In this context, the aim of this thesis was to optimize the quality of RBCs for transfusion by 

modifying the additive solution. 

SUMMARY OF RESULTS 

Chapter 1: “Changes in the red blood cells during storage” 

The purpose of the experiments presented in the first chapter was to qualify and quantify storage 

lesions (metabolic, oxidative and morphological). To this aim, five RCCs stored at 4°C in Citrate-

Phosphate-Dextrose and Saline-Adenine-Glucose-Mannitol (CDP-SAGM) were followed for 71 days. 

Weekly analyses demonstrated the accumulation of various types of lesions at different chemical and 

cellular levels. Overall, the RBCs stored within RCCs showed a linear increase in Mean Corpuscular 

Volume (MCV) and anisocytosis (SD-RDW). Early during storage, the main changes that were 

observed concerned the Antioxidant Power (AOP) and the intracellular concentration of reduced 

Glutathione (GSH), which increased in the 10 days, only to decrease afterwards. After four weeks, 

significant irreversible lesions were observed, while lactate levels were seen to saturate to a 

maximum. From week 5, discocytes were progressively replaced by transient echinocytes, and 

ultimately spherocytes. In addition, the steady increase in the percentage of hemolysis and the 

number of generated MVs became exponential. After six weeks of storage (expiration date), the ratio 

of GSH to oxidized Glutathione (GSSG) was down by 25.3 %, reflecting the increase in levels of 

oxidative stress. Finally, at week 8 of storage, glucose consumption stopped, and at the end of the 

follow-up, the only remaining discocytes had lost 10 % of their dynamic membrane fluctuations. 

Interestingly, the severity of changes differed among donors, in line with previous studies21,22. 

 In the second part of Chapter 1, the focus was on the impact of the membrane protein 

phosphorylations on RBC morphology. Specifically, the targets and effects of Tyrosine-

phosphorylations (pY) were investigated using an inhibitor of Protein Tyrosine Phosphatases (PTP), 

i.e. sodium Orthovanadate (OV). The Western Blot (WB) analysis of the pY showed that the capacity 

for phosphorylation was gradually lost during storage, due to the depletion of Adenosine 

Triphosphate (ATP). The rejuvenation replenishing the cellular ATP was shown to restore pY levels. 

Then, phosphoproteomic analysis revealed the presence of 7’764 phosphosites (609 

phosphoproteins), of which 40 pY sites belonging to 21 different proteins were upregulated upon OV 

treatment. The first 20 upregulated pY sites belong mostly to proteins involved in cell structure, i.e. 

band 3, a- and b- spectrin, a- and b- adducin, protein 4.1, ankyrin-1, dematin, tensin-1, and flotillin-

2. Finally, Digital Holographic Microscopy (DHM) experiments showed that OV treatments induced 
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the formation of spherocytes via transient echinocytes. In the near future, the plan is to use specific 

Kinase Inhibitors (KIs) to further decipher the reactions controlling phosphorylation. 

Chapter 2: “Evolution of the antioxidant power in red cell concentrates during storage” 

In Chapter 2, six RCCs were prepared in CPD-SAGM additive solution, and followed for 43 days. The 

AOP was quantified electrochemically using disposable electrode strips, and compared with results 

obtained from a colorimetric assay. With both methods, the AOP reached a maximum after one 

week of storage prior to decaying and reaching a plateau. Variations in AOP were correlated to the 

extracellular UA levels. This major antioxidant found in plasma (120 to 450 µM) seems to be 

progressively exported from RBCs due to the their changing environment (due to the dilution of the 

residual plasma, among others). The AOP behavior could therefore reflect the changes in metabolism 

activity triggered by the preparation and storage of the blood product. Particularly noteworthy is the 

link between AOP and UA levels and the sex of donors: the AOP was generally lower (approximatively 

30 %) in RCCs donated by women than by men. 

Chapter 3: “Modification of the additive solution formulations to reduce red blood cell storage 

lesions” 

The experiments presented in Chapter 3 explored possible modifications of the additive solution 

formulation per se, to improve RBC storage. 

The first strategy consisted in restoring physiological levels of UA in RCCs to reduce its export 

from the cells, as the loss of intracellular UA can: 1) trigger a metabolic shift, and 2) reduce the 

intracellular antioxidant pool. Four CPD-SAGM RCCs were split into two subunits, supplemented at 

day 1 either with UA (380 and 320 µM for donations from men and women, respectively), or with 

SAGM only for the control, and followed for 42 days (with an additional time point at day 70). The 

first results showed only small differences between treated and untreated units, possibly because of 

the conditional pro-oxidant effect of urate. The concentration of supplements was perhaps also too 

low to be efficient. 

Next, Ascorbic Acid (AA, 110 µM) was supplemented in addition to UA (420 µM) to prevent 

its pro-oxidant side effect. Again, no significant improvement was observed across the majority of 

storage markers (pH, hemolysis, morphology, or deformability). Nevertheless, the RBC metabolism 

was particularly modified by such storage conditions: quantitative metabolomic analysis of targeted 

intracellular metabolites demonstrated that the treatment had a positive impact on RBCs, leading in 

particular to a better maintenance of glycolysis and GSH syntheses. 
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Finally, preliminary tests of addition of protective molecules against oxidative stress (ascorbic acid, 

N-Acetylcysteine [NAC], glutamine, Hydroxyurea [HU], a-lipoic acid, acetyl-L-carnitine, and a-

tocopherol) were not conclusive. 

The fact that none of the above treatments led to positive results at the cellular level (mainly 

hemolysis and morphology) raised the following questions: first, are the standard markers for aging 

sensitive enough and/or are they the most appropriate? Could the standard analytical methods 

somehow distort the results? For example, the preparation of RBC samples for imaging includes a 

washing step, the resuspension in HEPA buffer (composition described in ANNEX-1), and the plating 

of the RBCs in a multiwell plate coated with poly-L-ornithine (ANNEX-2). Each of these steps could 

introduce variability in the results. In addition, one could wonder if tested molecules are inefficient 

or not efficient enough? This not only calls into question the selection of compounds, but also the 

amount that was supplemented. Metabolomic analysis showed significant differences in this regard, 

potentially emphasizing the importance of dosage. Finally, one should think about the experimental 

approach. For example, what is the impact of a pool-and-split method? What is the effect of the 

temperature on the mechanism of action of a particular compound in terms of activity and uptake? 

Together, the above questions highlight the need to develop tools to predict more easily and 

rapidly (faster than with a whole follow-up) if a given compound meets important requirements to 

efficiently protect RBCs. 

Chapter 4: “Development of the TSOX assay, i.e. Test of Sensitivity to Oxidation” 

The goal of the project presented in the last chapter was to develop a test compatible with High-

Throughput Screening (HTS), making it possible to evaluate simply and quickly the antioxidant 

properties of a wide variety of compounds. The assay that was developed was named TSOX for “Test 

of Sensitivity to Oxidation”. It consists in treating RBCs with different compounds that have 

potentially protective effects (direct, indirect, or both), and to expose them to oxidative stress. Two 

readout methods were proposed: first, a fluorescent one, where a 2,7-Dichlorofluorescin Diacetate 

(DCFH-DA) fluorescent probe (a reporter of intracellular Reactive Oxygen Species (ROS) generation) 

was used, and second, DHM, allowing us to measure the effects of specific treatments on the RBC 

morphology. 

The initial phase of development consisted in treating RBCs with various concentrations of 

different oxidants (hydrogen peroxide [H2O2], diamide and 2,2ʹ-Azobis(2-methylpropionamidine) 

dihydrochloride [AAPH]), to generate various kinds of stress. Each oxidant triggered a specific 

behavior that was shown to be dose-dependent. Then, the TSOX was challenged with known 

antioxidants such as AA, vitamin E, resveratrol and UA. Few adjustments are required before adding 

the screening assay to the library of Natural Products (NPs) extracts available at the Biomolecular 
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Screening Facility (BSF) of the Ecole Polytechique Fédérale de Lausanne (EPFL, Lausanne, 

Switzerland). This library provided by Analyticon – InterBioscreen contains 2’654 organic molecules 

purified from plants and bacteria. Finally, lead molecules could be supplemented in RCC bags. 

CONCLUSIONS & PERSPECTIVES 

The RBCs accumulate lesions during storage, which can impact their in vivo recovery and, hence, 

reduce the efficiency of transfusions. As these lesions appear through a succession of events, it 

seems suitable to reconsider storage conditions at an early stage. In this thesis, modifications of the 

additive solution formulation were proposed, providing a cost-effective strategy. 

The primary goal was not to increase the storage duration. Indeed, a study regarding this 

aspect conducted at the Centre Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzerland, 

31’352 RCCs between 2011 and 2012, Figure 1A) showed that the majority of RCCs are used around 

the second week of storage, following the first-in-first-out principle (Figure 1B). When looking more 

carefully at the repartition of blood groups, however, it appears that more common blood groups (O 

Rhesus + and A Rhesus +) are transfused earlier during storage, while less frequent ones (AB, B and 

Rhesus -) are mostly transfused with old RCCs (Figure 1C). For example, at the CHUV, 56.6 % of the 

AB Rhesus + RCCs are transfused after 35 days of storage. 
 

 
Figure 1 – Blood transfusion at the Centre Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzerland). [A] Number of 

labile blood products, i.e. Platelets Concentrates (PCs), Red Cell Concentrates (RCCs) and plasma units transfused in 2011 
and 2012 at the CHUV (more than 15’000 products each year). [B] Storage duration of transfused RCCs. [C] Percentage of 

transfused RCCs, for different donor’s blood groups and storage times. Adapted from the Medicine Master thesis of Marine 

Gossin, 2016. 

 

Improving the quality of storage is thus a more important goal, to provide a better product to more 

patients, and limit as much as possible adverse effects of storage lesions. 

Understand to improve 

The approach followed throughout this thesis was to observe and understand in more detail what 

happens to RBCs stored within RCCs, and to propose suitable corrective strategies. Accordingly, the 

supplementation of UA was based on the observation that the depletion of extracellular UA levels 
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1. Introduction 
La transfusion sanguine est un acte médical courant. Les concentrés érythrocytaires (CE) 
permettent notamment d’améliorer l’apport et la délivrance tissulaire d’oxygène chez les 
patients qui en ont besoin. Au Centre Hospitalier Universitaire Vaudois (CHUV ; Lausanne, 
Suisse), plus de 15'000 CE sont transfusés chaque année (Figures 1, 2). Afin de faire 
correspondre l’offre et la demande, le nombre de prélèvements est planifié de manière à ne 
pas avoir de perte sur le stock. De ce fait, afin d’optimaliser la gestion des réserves des CE, 
des solutions de conservations ont été développées au fil des années permettant ainsi la 
conservation des CE avant leur distribution. Pour éviter le gaspillage de produits sanguin, le 
principe suivant a été adoptés par la grande majorité des banques de sang : la délivrance des 
CE se base sur le CE compatible le plus vieux (1, 2) (first-in, first-out system), avec une 
exception pour les patients très vulnérables qui peuvent recevoir du sang plus frais dans 
certaines circonstances (3). Le temps de stockage moyen avant la transfusion sanguine est de 
16 à 21 jours (1). 
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Figure 4 : Pourcentages des transfusions de CE en fonction du temps de stockage et des groupes sanguins 

 

 
Figure 5 : Pourcentages des transfusions de CE en fonction des groupes sanguins et du temps de stockage 

 

En séparant les groupes sanguins en deux catégories - les groupes fréquents dans la 
population (A et O) et les groupes rares (AB et B) - on consolide l’idée que les groupes 
sanguins rares sont plutôt transfusés en fin de leur conservation (Figure 6). Lors de la 
première semaine de stockage des produits sanguins, 94,2% des transfusions sont composées 
de sang des groupes A et O et 5,8% des groupes AB et B. Durant la deuxième semaine, 94,9% 
de groupes fréquents et 5,1% de groupes rares. Les valeurs suivantes sont : 89,1% et 10,9% 
pour la troisième semaine, 83% et 17% pour la quatrième semaine, 67,4% et 32,6% pour la 
cinquième semaine, 33,4% et 66,6% pour la sixième semaine. On remarque donc que plus les 
transfusions sont faites avec du sang stocké longtemps, plus elles seront composées de 
groupes sanguins rares. 
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after plasma removal triggers a metabolic remodeling, potentially reducing intracellular antioxidant 

defenses. The observation that none of the added antioxidant molecules protect RBCs efficiently led 

us to propose the TSOX assay as a practical means to determine whether a molecule is indeed 

protective. This test was intended to provide a rational tool for making decisions regarding possible 

modifications of the additive solution formulation, instead of conducting trials which often consume 

a lot of time and resources. Its versatility offers a wide range of possibilities to understand the 

mechanisms of action of a specific molecule. For example, one could imagine to test the effects of 

different compounds at various concentrations, temperatures, and oxygen levels. It would even be 

possible to use the TSOX assay to mimic a transfusion, e.g. by incubating the RBCs in plasma at 37°C 

in a controlled atmosphere. 

 The data presented in this thesis provides novel information about the ex vivo aging of RBCs, 

and a better understanding thereof. New functions and behaviors were observed, such as the 

reported phosphorylation events and AOP evolution. Furthermore, metabolomic approaches have 

highlighted the influence of metabolite uptakes, opening up new avenues for investigation of 

metabolite fluxes and regulations within the purine salvage pathways and the PPP. More broadly, the 

results presented in this thesis contribute to our general knowledge of RBCs. 

Predicting the aging of red blood cells and the post-transfusion recovery: still looking for a gold 

standard 

Today, the perfect marker to predict post-transfusion recovery of transfused RBCs is still missing, 

even though metabolites such as hypoxanthine have been shown to be correlated with post-

transfusion recovery (mainly in mouse models23). It is currently impossible to say with a sufficient 

level of confidence whether RBCs in blood bags will fulfil their task of oxygenation efficiently after 

transfusion, and, hence, there is currently no way of knowing whether such blood products are 

useful. Tomorrow’s research and innovation will surely help fill this gap. 

Existing examples are omic approaches, i.e. lipidomics, proteomics and metabolomics, which 

are used broadly around the world today. One of our collaborators, Professor Jolicoeur from 

Polytechnique Montréal (Canada), is developing an in silico model of the RBC metabolism to predict 

the evolution thereof as a function of the initial conditions and, hence, to predict the effects of a 

particular treatment. Such tools are of particular interest to boost research on RBCs, and, more 

generally, on blood cells and blood products. 

Rheological properties may be the best way to predict the efficiency of RBCs after 

transfusion. Microfluidics devices (such as the MVA devices developed by Hemanext) enabling to 

measure the cell deformability are particularly promising. Such approaches could both serve as a 
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research tool and a quality control assay, whereas applications to bedside use will require 

improvements in terms of ease of use and suitability to the needs of patients. 

Last but not least, donor characteristics themselves influence the storage24–27: their level of 

antioxidant, saturation of oxygen, and hormones are a few parameters involved in RBC aging. A 

better characterization of these parameters and a deeper understanding of the link between storage 

and donors are also important to properly process and store collected blood. 

LAST WORDS 

In conclusion, the future of transfusion is full of challenges, but also of promises. There is still room 

for improvements, emphasizing the essential role of research and innovation. 

This PhD thesis was conducted at Transfusion Interrégionale CRS SA (TIR), who provides labile 

blood products for the regions of Bern, Vaud and Valais in Switzerland. The company slogan is “Be 

together for the donors and the patients”. In this context, the mission of the R&D laboratory of 

Epalinges is to study the ex vivo journey of blood components (mainly plasma, platelets and RBCs) 

from donors to patients, to deliver the best products to the latter. It is this leitmotiv which motivated 

me to choose this research project, and guides my work every day. 
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ANNEX-1: COMPOSITION OF HEPA AND HEPANOCALCIUM BUFFER 
 

Table 1 – Composition of HEPA and HEPAnoCalcium buffers. 

Compound [mM] g / 1 L g / 500 mL MW / g / mol 

NaCl 130 7.597 3.799 58.44 
KCl 5.4 0.403 0.201 74.55 
CaCl2*2H2O 1 0.147 0.074 147.02 
MgCl2*6H2O 0.5 0.102 0.051 203.3 
Glucose 10 1.800 0.900 180 
Hepes 15 3.575 1.787 238.31 
BSA 1 mg/mL 1 0.500  

  In grey: compound not added in the HEPAnoCalcium buffer. 
 
Adjust pH at 7.4 with HCl or NaOH. Filtrate at 0.22 µm and store at 4°C. Theoretical osmolarity is 

approximatively 298 mOsm. Chemicals came from MSD Merk Sharp & Dohme and Sigma-Aldrich. 
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ANNEX-2: COATING OF IMAGING PLATE WITH POLY-L-ORNITHINE 

 

The poly-L-ornithine (Sigma-Aldrich, P3655) is prepared in deionized water (dH2O) at 100 mg/L and 

filtrated. Then the wells of the 96-well multiplate are field with 100 µL of this solution using a 

MultiDrop dispenser (ThermoFisher Scientific) and incubated at 37°C during 3 to 4 hours. After that, 

the plate is washed (3x) with dH2O using a washer (Biotek EL405). Finally the plate is tapped onto an 

absorbing paper to remove as much water as possible and is finally placed under a laminar flow hood 

until being completely dry. They can then be stored at 4°C during at least 2 weeks. 
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ANNEX-3: CORRELATION BETWEEN THE % SPHEROCYTES AND SD-OPD 

PARAMETERS 

 

 
Figure 1 – Single-cell versus population analysis. Correlation between the percentage of [A] spherocytes, [B] 

discocytes, [C] stomatocytes and [D] echinocytes (from CellProfiler) and the Standard Deviation of Optical Path 
Difference (SD-OPD) value. Mean values for five Red Cell Concentrates (RCCs) are presented ± Standard Deviation 

(SD). The equation of linear correlation curve (dotted line) and regression coefficient R2 are specified. 

The analysis of correlation between Red Blood Cell (RBC) morphology (based on the results obtained 

with CellProfiler and CellProfiler Analyst) and the Digital Holographic Microscopy (DHM) quantitative 

value demonstrated that the Standard Deviation of Optical Path Difference (SD-OPD) was linearly 

correlated (from day 15 of storage ) to the percentage of spherocytes (positively, R2 = 0.98) and 

discocytes (negatively, R2 = 0.98) in the sample, but not to the percentage of stomatocytes and 

echinocytes (Figure 1). The data come from the study presented in Chapter 1, Part 1. DHM images of 

RBCs were acquired weekly during 71 days at a 20x magnification. 
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ANNEX-4: DETAILS ON CELL MEMBRANE FLUCTUATIONS 

MEASUREMENTS 

 

Fluctuations rate can be measured using Equation 1. 
 

!"#$φ&'(( + *+,&-./01234 = !"#(*&'(() + !"#$*+,&-./01234 + 29:;$*&'(( + *+,&-./01234      Equation 1 

 

The temporal deviation of each pixel at position (<, >)?@ can be measured using Equation 2: 
 

ABC(*&'(()(D,E) = F(ABC(*&'(( + *+,&-./0123)(D,E))
G − (ABC(*+,&-./0123))

G Equation 2 

 

Eventually, the Cell Membrane Fluctuations (CMFs) is measured with Equation 3: 
 

CMFLMN(nm)(Q,R) = std(φVWXX)(Q,R) Equation 3 

 

In which !"#(*&'(()and !"#$*+,&-./01234 are the temporal variance in Optical Path Difference (OPD) 

corresponding to the CMFs and to the background fluctuations, respectively, and 

9:;(*&'((, *+,&-./0123) is the covariance of the two variables. Assuming that the two variables are 

independent, 9:;$*&'((, *+,&-./01234 = 0. All the simulations were implemented in Matlab 2015. 
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ANNEX-5: PREPARATION OF SODIUM ORTHOVANADATE SOLUTION 

 

Solution of 100 mM Sodium Orthovanadate (OV, Sigma-Aldrich, S6508) is prepared in dH2O. The pH is 

set to 9.0 which makes the solution turn yellow. The solution is boiled until colorless and cooled at 

Room Temperature (RT). The pH was set again to 9.0 and the solution was boiled again. The cycle was 

repeated a few times. Such procedure accelerates the depolymerization of the decavanadate into 

monovanadate. Stock solution was aliquoted and stored at -28°C. 
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ANNEX-6: RESULTS OF THE PHOSPHOPROTEOMICS ANALYSIS. 

 

On next two pages: list of the Tyrosine-phosphorylated (pY) after 1 hour of treatment with 2 mM OV. 
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ANNEX-7: IMPACT OF BLOOD PROCESSING: A QUICK GLANCE ON 

ANTIOXIDANT POWER FROM WHOLE BLOOD COLLECTION TO RED 

BLOOD CELL CONCENTRATE STORAGE 

Aim of the study 

The aim of the present experiment was to first to evaluate the impact of the blood product processing 

on the Antioxidant Power (AOP) within the bag by following its evolution from donation, throughout 

the different steps of the Red Cell Concentrate (RCC) preparation and as well as during its storage at 

4°C upon expiry. 

Material and methods 

Whole blood was donated by a healthy young man (28 years old) with informed consent at the 

transfusion center of Epalinges, Switzerland. This donor has a lifetime deferral because he had received 

a transfusion in the past. Consequently, his blood could only be used for research purposes. 
 

 
 

Immediately after donation, the hematological parameters and AOP were analyzed (WB T0 sample). 

Then, the same sample was centrifuged 10 min at 2000 g and 4°C and the supernatant collected. The 

proteins concentration was determined using the A280 Absorbance protein method of the NanoDrop 

spectrophotometer that uses the Beer’s Law (with 1 Abs = 1 mg/mL), the blank was done in 0.9 % NaCl. 

The AOP was also measured in the supernatant. The whole blood bag was left 1h at RT without 

agitation. A sample was taken and analyzed as before (WB T60 sample). Then, the WB bag was 

centrifuged during 13 min at 5047 g and 22°C to separate the RBCs from the plasma and buffy coat. 

The different blood components were transferred aseptically in distinct storage bags. A sample was 

taken from the plasma bag (Plasma sample) for the same analyses. After being mixed with Saline-

Adenine-Glucose-Mannitol (SAGM) additive solution, the final processing step for the RBCs consisted 

in filtration to remove the residual leukocytes. 
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The RCC was stored under standard conditions (4°C without agitation). It was analyzed immediately 

(RCC Day 0 sample), and at Day 1, 2, 5, 6, 7, 8, 9, 12, 14, 21, 28, 35, 42 (RCC storage samples). To do 

so, RCC samples were withdrawn with a syringe through a sampling site. Hematological parameters 

and AOP were measured on the whole RCC. Then, the samples were centrifuged at 2000 g during 10 

min at 4°C and the supernatant collected for the determination of the percentage of hemolysis, the 

protein concentration and the AOP. 

Results and discussion 

The hematological parameters were normal. During storage, the RBC count remained stable and the 

Mean Corpuscular Volume (MCV) and anisocytosis (reflected by the Standard Deviation of Red Blood 

Cell Distribution Width [SD-RDW]) increased, as usually observed (Figure 2, blue curves). At Day 42, 

the percentage of hemolysis was of 0.287 ± 0.002 %, well below the accepted 0.8 % (Figure 2, red 

curve). 
 

 
Figure 2 – Red Blood Cell (RBC) aging markers. Hematological data: RBC count, mean corpuscular volume (MCV) and Standard 

deviation of Standard Deviation of Red Blood Cell Distribution Width (SD-RDW) measured with Sysmex analyzer. Percentage 

of hemolysis in the blood bag determined using the Harboe spectrophotometric method. 

 

 
Figure 3 – Evolution of the protein concentration in the supernatant during blood processing and Red Cell Concentrate (RCC) 

storage. Determined with the NanoDrop spectrophotometer using A280 Absorbance. Mean value ± Standard Deviation (SD). 

 

The concentration of proteins (Figure 3) in the whole blood supernatant (i.e. plasma) was of 50.05 ± 

0.32 mg/mL at T0 and 46.79 ± 0.22 mg/mL after 60 min of rest. After processing, the quantity measured 

was similar, i.e. 46.15 ± 0.42 mg/mL, in the sample taken from the plasma bag. As expected, the 
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amount of proteins was strongly reduced in the RCC supernatant because of plasma removal and 

addition of SAGM solution. At Day 0, the protein concentration dropped to 3.099 ± 0.095 mg/dL. At 

the beginning of storage period, the protein concentration followed a pattern similar to the AOP, 

because UA (a main contributor to the extracellular AOP) has a maximum of absorbance at 292 nm 

and thus interferes with the measure of the A280 Absorbance. Later, the increase in protein 

concentration was related to the hemolysis of the RBCs. 
 

 
Figure 4 – Evolution of the Antioxidant Power (AOP) in the supernatant and whole sample during blood processing and Red 

Cell Concentrate (RCC) storage. Quantified by pseudotitration voltammetry with Edelmeter. Mean value ± Standard Deviation 

(SD). 

 

Immediately after donation, the AOP was of 140.5 ± 4.95 nW in the WB and 217.5 ± 3.54 nW in its 

supernatant (i.e. plasma). After 60 min of rest, it dropped to 127.5 ± 2.12 nW and 195.5 ± 3.54 nW, 

which correspond to a loss of 9.3 and 10.1 %, respectively, suggesting that even before processing, the 

exposure to an ex vivo environment and the stress induced by the collection procedure increases the 

oxidative burden and/or depletes the WB antioxidant defenses. The extracellular AOP remained stable 

during WB centrifugation and separation. Removal of plasma and addition of SAGM solution drastically 

decreased the AOP in the RCC compared to the WB. Right after processing, the RCC AOP dropped to 

63.0 ± 0.0 nW in the whole sample and 75.0 ± 7.52 nW in the supernatant. To be noted that the bare 

SAGM solution has a basal AOP of approximately 20 nW. During the first week of storage, and as 

reported in the Part 2 of Chapter 2, the RCC AOP raised sharply subsequently to the release of 

intracellular UA by the RBCs. A maximum was reached at 90.3 ± 1.15 nW for the whole RCC and 145.0 

± 7.94 after 7 days, probably because of the exhaustion of the intracellular UA pool. 

Conclusion 

The results obtained during this experiment illustrated the effects of blood processing on the RCC AOP 

and suggest that the RBCs are impacted by their new environment from the very beginning of the 

storage period.  
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ANNEX-8: METABOLOMICS OF RED BLOOD CELLS TREATED WITH 

ASCORBIC ACID AND URIC ACID 

 
Figure 5 – Quantitative data of the time-course metabolomics analysis for control RBCs stored in standard conditions 
(SAGM only, blue lines) or for RBCs supplemented with ascorbic acid-uric acid antioxidant (red lines). Only intracellular 

metabolites were measured. Each point corresponds to the mean value ± SD of metabolite concentration measured in 4 red 

cell concentrates. 
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1. Introduction 
In general, blood collected by blood banks is combined with additive solutions to extend storage time 
and quality of red blood cells. 

Lausanne Blood Bank (“Service Régional Vaudois de Transfusion Sanguine”) has initiated a 
research program to investigate the effect of additive solutions on red blood cells. 

In this context, B. Braun Crissier Pharmaceutical Development department will manufacture at 
labscale small quantities of these new additive solutions which will be used for preliminary in vitro 
evaluation at Lausanne Blood Bank. 

This document lists the raw materials which will be used and summarizes the compositions of the 
additive solutions to be prepared. 
 

2. References 
x Study proposal, Service Régional Vaudois de Transfusion Sanguine, Lausanne “New routes and 

new additive solution formulations to improve the quality of stored red blood cells”. 
 

3. Definitions and Abbreviations 
API  Active Pharmaceutical ingredient 
BCR  B. Braun Crissier (Switzerland)  
Blood Bank Service Régional de Transfusion Sanguine 
N/A  Not Applicable 
n.r.  Not Relevant 
QS  Sufficient Quantity 
RBCAS Red Blood Cells Additive Solution 
SAGM  Saline Adenine Glucose Mannitol 
tbd  To Be Defined 
WFI  Water for Injections 
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4. Materials and methods 

4.1 Raw materials 
Raw materials used for red blood cells additive solution preparation are listed in the Table below. 

Compound or Component Mw 
(g/mol) Supplier Art Nb 

1 Ascorbic acid 176.12 DSM 0408050 

2 N-Acetyl cysteine 163.19 BCR DA30057 

3 L-Glutamine 146.14 Sigma Aldrich G5792 

4 Hydroxyurea 76.05 Sigma Aldrich H8627 

5 α-lipoic acid 206.33 BCR DT19075 

6 O-Acetyl-L-carnitine hydrochloride 239.70 Sigma Aldrich A6705 

7 α-Tocopherol 430.71 BASF 50371444 

8 NaCl 58.44 BCR DS49957 

9 Phospholipid based solubilizer 608.7 BCR N/A 

10 Adenine 135.13 Sigma Aldrich A8626 

11 D-Glucose monohydrate 198.17 BCR 1620071 

12 D-Mannitol 182.17 BCR DM38037 

13 HCl 20% n.r. BCR R720 

14 NaOH 40% n.r. BCR R710 

15 WFI n.r. BCR DA01072 

Table 1 : Components of red blood cells additive solutions 

x Safety consideration 
Red blood cells additive solutions components are biologically active compounds and adequate 
safety precautions should be observed for storage, handling and waste disposable. Detailed 
information are provided in their respective MSDS. 
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4.2 Samples Packaging 
The following packaging materials will be used for the study. 

Component Description Supplier* 

50 ml clear glass bottle Type I tubular glass 
20 mm Crimp neck Schott AG (Germany) 

20 mm stopper Omniflex Plus coated stoppers Daetwyler AG (Switzerland) 

20 mm flip off cap Alu cap with red flip off cap Daetwyler AG (Switzerland) 

*: Alternative suppliers could be used assuming comparable quality 

Table 2 : Samples packaging description 

Vials and stoppers will be rinsed with WFI and autoclaved before use. 

4.3 Methods 
Preparation of red blood cells additive solutions will be performed at labscale in BCR Pilot Laboratory 
and filtered through a 0.2 µm prior filling. Solution will be considered as low bioburden but not sterile 
per se.  
Details of the manufacturing operations will be documented in BCR formulation and process 
operators logbooks. 

5. Analytical Program and Storage Conditions 

5.1 Analytical Program 
Analyses will be performed after manufacturing within BCR Pharmaceutical Development department 
and Lausanne Blood Bank according to the Table below. 

Parameter Method 
Reference Preliminary Acceptance Limit Testing Site 

Visible particles Ph. Eur. 2.9.20 Practically free from particles BCR 

Clarity and degree of 
opalescence of solution Ph. Eur. 2.2.1 Clear 

(≤ 3 NTU) BCR 

Degree of coloration of solution Ph. Eur. 2.2.2 Record data BCR 

pH Ph. Eur. 2.2.3 7.0 – 7.5 BCR 

API content tbd tbd Lausanne Blood 
Bank 

Table 3 : Red blood cells additive solutions analytical program 

5.2 Storage Conditions 
Samples will be stored frozen at BCR and at Lausanne Blood Bank before use. Solution will be 
thawed shortly before use, checked for absence of precipitation and kept protected from light and 
oxygen. At the current stage of the study, it is not foreseen to perform a stability study on the red 
blood cells additive solutions.  
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6. Red blood cells additive solutions composition 
Composition of SAGM and red blood cells additive solutions RBCAS-01 and RBCAS-02 are provided 
in the Table below. 

Compound or Component 
SAGM RBCAS-01 RBCAS-02 

(g/l) mM (g/l) mM (g/l) mM 

1 Ascorbic acid - - 1.154 6.555 - - 

2 N-Acetyl cysteine - - 2.326 14.250 - - 

3 L-Glutamine - - - - 12.495 85.500 

4 NaCl 8.770 150.068 8.770 150.068 8.770 150.068 

5 Adenine 0.169 1.251 0.169 1.251 0.169 1.251 

6 D-Glucose monohydrate 9.000 45.416 9.000 45.416 9.000 45.416 

7 D-Mannitol 5.250 28.819 5.250 28.819 5.250 28.819 

8 HCl 20% QS to pH 5.5 – 5.9 QS to pH 7.0 – 7.5 QS to pH 7.0 – 7.5 

9 NaOH 40% QS to pH 5.5 – 5.9 QS to pH 7.0 – 7.5 QS to pH 7.0 – 7.5 

10 WFI QS to 1L QS to 1L QS to 1L 

Table 4 : Composition of SAGM and Red Blood Cells Additive Solutions 01 and 02 
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