
 Direct Versus Indirect Neural Control Based on

Radial Basis Function Networks

Alex Alexandridis†, Marios Stogiannos†, Andronikos Loukidis†, Konstantinos Ninos†, Evangelos Zervas†,

Haralambos Sarimveis*

†Department of Electronic Engineering, Technological Educational Institute of Athens, Greece

alexx@teiath.gr

*School of Chemical Engineering, National Technical University of Athens, Greece

Abstract—This work presents a comparison between direct

and indirect neural control methods based on the radial basis

function (RBF) architecture. As far as direct control schemes are

concerned, a novel direct inverse neural RBF controller taking

into account the applicability domain criterion (INCAD) is

utilized. Α model predictive control (MPC) formulation based on

RBF networks is tested as an example of indirect method. The

performances of the two control schemes are evaluated and

compared on a highly nonlinear control problem, namely control

of a continuous stirred tank reactor (CSTR) with multiple stable

and unstable steady states. Results show that the INCAD

controller is able to provide satisfactory performance, while

performing almost instant calculation of the control actions.

MPC on the other hand, outperforms the INCAD in terms of

speed of responses, due to the built-in optimization capability;

however, the lengthy procedure of solving online the optimization

problem impedes the practical use of MPC on systems with fast

dynamics.

Keywords—Direct control; indirect control; model predictive

control ; neurocontrol; radial basis function

I. INTRODUCTION

Artificial neural networks (NNs) [1] have been used
extensively during the last decades for designing novel
automatic control schemes [2, 3]. The success of NN-based
controllers is mainly due to their ability to learn from
experimental data using specially designed efficient online or
offline training methods, a fact which makes them particularly
useful in cases where conventional methodologies fail to
develop appropriate dynamic models of the system and/or
compute the control law. Other useful properties of NNs
include tolerating faults and uncertainties, acting as universal
approximators, and performing massive parallel processing.
Among the different NN architectures used for designing
control systems, radial basis function (RBF) networks [4]
present some important advantages including better
approximation capabilities, simpler network structures, and
faster learning algorithms.

There are two basic design approaches for formulating NN-

based control strategies: Indirect design, where the NN serves
as the dynamic model of the system, predicting the output or
the complete state vector and direct design where the NN
approximates the inverse system dynamics and acts as a
controller. The indirect design approach is usually coupled
with the Model Predictive Control (MPC) methodology, where
NN methodologies are applied on historical dynamic input-
output data to construct the nonlinear dynamic predictive
model of the system [5, 6]. An optimization procedure is then
applied to find the optimum sequence of moves that will drive
the system to the desired conditions. MPC techniques can
handle multiple input–multiple output (MIMO) systems, and
take into account input/output/state constraints and
system/model mismatches.

Despite their advantages, indirect design methodologies
based on the MPC concept share an important drawback: the
nonlinear optimization problem must be solved in real time,
before the next sample is collected from the system;
nevertheless, the available time between two subsequent time
instants may not be sufficient even for satisfying the
requirements of suboptimal MPC. This limitation prevents the
application of indirect design methodologies to systems with
fast dynamics. Direct design techniques on the other hand,
completely avoid the solution of the optimization problem,
using the NN as an explicit control law. This means that at
each discrete time instant, the NN directly calculates the values
of the manipulated variables that are used as inputs to the
system [7, 8]. Past values of input and output (or state)
variables along with the desired set-points constitute the input
vector to the inverse NN model. The efficiency of direct design
methodologies stems from the fact that their implementation
requires only the evaluation of a nonlinear function at each
time instant, as opposed to the lengthy solution of the nonlinear
optimization problem.

In this work we select a novel direct neural control scheme
with the additional ability to avoid extrapolation based on the
applicability domain (AD) concept [9] and test it against a
neural indirect MPC controller. Both controllers, which are
based on the RBF architecture, are applied to the control of a
continuous stirred chemical reactor (CSTR), exhibiting
multiple steady states. The work of M. Stogiannos was supported by the Greek State Scholarship

Foundation (IKY), through the IKY Fellowships of Excellence for
Postgraduate Studies in Greece - Siemens Program.

2014 6th Computer Science and Electronic Engineering Conference (CEEC) University of Essex, UK

978-1-4799-6692-9/14/$31.00 ©2014 IEEE 91

The rest of this paper is organized as follows: In the next
section we give a brief introduction to RBF networks and the
FM algorithm. In Section 3 we describe the development of
RBF-based neural controllers, including the direct and indirect
approaches. Section 4 presents a comparison of the two
different approaches when applied to a nonlinear control
problem. Finally, the paper ends with the concluding section.

II. RBF NETWORKS AND THE FM ALGORITHM

RBF networks form a special neural network architecture
that consists of three layers (Fig. 1).The RBF network training
procedure corresponds to determining the hidden node basis
function parameters and the output-layer weights. Standard
approaches in RBF network training, decompose this problem
in two steps: In the first step, the hidden layer basis function
parameters are obtained using an unsupervised clustering
technique, like the k-means algorithm [10]. The latter
postulates an arbitrary number of RBF centers and then
calculates their locations, the final selection being made
through a tedious trial-and-error procedure. An alternative to
this time-consuming approach was given by the fuzzy means
(FM) algorithm [4], which has the ability to calculate in one
step the number and locations of the hidden node centers. The
FM algorithm has found many successful applications in fields
like medical diagnosis [11], soft-sensor development [12], etc.

The FM algorithm, is based on a fuzzy partition of the input
space, where the domain of each input variable is partitioned
into a number of fuzzy sets. Combining N one-dimensional
fuzzy sets, where N is the number of input dimensions, one can
generate a multi-dimensional fuzzy subspace. These fuzzy
subspaces form a grid where each node is candidate for
becoming an RBF center. The objective of the FM algorithm is
to assemble the RBF network hidden layer by selecting only a
small subset of the fuzzy subspaces. This selection is based on
a hyper-circle placed around each fuzzy subspace center. The
hyper-circle marks a boundary between input vectors that
receive non-zero or zero membership degrees to each particular
fuzzy subspace. Having defined the membership function, the
algorithm proceeds with finding the subset of fuzzy subspaces
that assign a nonzero multidimensional degree to all input
training vectors. This is accomplished using a non-iterative
algorithm which requires only one pass of the input data, thus
rendering the center calculation procedure extremely fast, even
in the presence of a large database of input examples. More

details about the FM algorithm can be found in [4].

The second step in RBF training involves determination of
the output-layer weights; this step is usually implemented by
linear least squares regression, which guarantees a global
minimum as far as the weights are concerned.

III. NEURAL CONTROLLER DESIGN BASED ON RBF NETWORKS

A. Indirect design using MPC

Let us assume that the system under control is a Single
Input-Single Output (SISO) system with N state variables. A
discrete dynamic model of the system correlates the next value
of the output (controlled) variable with the current values of
the state variables and the input (manipulated) variable:

       1 ,y k f k v k  x (1)

where y is the controlled variable, x is the state vector and v is
the manipulated variable. We can assume, without loss of
generality, that f is a nonlinear function.

MPC controllers typically make use of a direct dynamic
model of the system, thus approximating (1). Under the
assumptions that all state variables are measurable and a
sufficient number of training examples is available, the FM
algorithm can be used to approximate the unknown function f,
providing a model able to predict the next value of the output
variable based on previous values of the states and the input:

       1 RBF ,y k k v k  x (2)

where RBF is the nonlinear function implemented by the RBF
network, calculated through (2). Notice that this model cannot
by itself be used to control the plant, as it is trained only to
identify the unknown system and predict the result of
candidate control actions. In order to make use of (2), at each
discrete time step an optimization problem is formulated,
where the objective is to minimize the difference between the
set point and the predictions of the model. The solution to this
problem is the optimum sequence of control moves that drives
the controlled variable to the set point value.

In a typical MPC implementation, the objective function at
each discrete time instant k is a combination of two targets: a)
minimization of the distances between the predicted output
values and the set point and b) minimization of the control
moves:

        
2 2

(),..., ()
1 0

ˆmin

p c

c

h h

i
v k v k h

i i

y k i k v k i 


 

        (3)

where Δv is the difference between two subsequent control
moves; Θ and Ω are the error and move suppression weights;
hc and hp are the control and prediction horizons,
respectively, ŷ is the model prediction for the controlled

variable, which is assumed to be one of the state variables, and
 is the set point value.

The minimization problem is solved subject to a number of
constraints:

Fig. 1. Typical structure of an RBF network

2014 6th Computer Science and Electronic Engineering Conference (CEEC) University of Essex, UK

978-1-4799-6692-9/14/$31.00 ©2014 IEEE 92

        ˆ RBF 1 , 1 ,

1 p

y k i k i v k i E k i

i h

       

 

x
 (4)

         RBF 1 , 1 , 1 pE k i y k k v k i h      x (5)

 min max() , 1 cv v k i v i h     (6)

c() 0, 1 pv k i h i h      (7)

where ()E k is the current error between the actual output

measurement and the model prediction. Eqs. (4)-(5) denote
that the modeling error measured at time point k is assumed to
be the same over the entire prediction horizon. Notice that
multiple calls of the RBF model (2) are needed to calculate the
future values of the controlled variable y, throughout the
prediction horizon. Eq. (6) poses upper and lower bounds on
the values of the manipulated variables, while (7) denotes that
no control moves are allowed after the end of the control
horizon. The set of constraints can be augmented by imposing
upper and lower bounds on the system output or the state
vector. Figure 2 shows schematically how the RBF model and
the MPC methodology are integrated.

B. Direct design using inverse RBF models

The concept of a direct controller is simpler compared to
the indirect MPC scheme described in the previous subsection.
Direct design implementations are based on a discrete inverse
dynamic model of the system under control that can be
formulated as follows:

       , 1v k g k y k x (8)

where g is the inverse dynamic function of the system.
Substituting the next value of the controlled variable y(k+1) in
(8) with the current value of the setpoint ω(k), essentially
provides a control law which can be used for calculating
which value of the manipulated variable should be applied at
any discrete time instant k, in order to drive the system from
its current state, to the setpoint:

       ,v k g k k x (9)

Under the same assumptions of measurable states and
adequate number of training examples, the FM algorithm can
be used to approximate the unknown function g. The RBF
approximator of the inverse dynamics can then act as a

controller, receiving at each discrete time instant the desired
set-point value and the values of the state variables and
producing the control command:

       RBF ,v k k k x (10)

The operation of such a controller is depicted in Fig. 3.

It is well known that neural network models – as well as
other black-box modeling techniques – have a limited ability
for generalization. This comes as a direct result of the
inadequacy of such models to provide reliable predictions in
regions of the input space which have not been covered
sufficiently in the training dataset, i.e. the inability to
successfully perform extrapolation. The performance of the
inverse controller based on RBF networks described by (10),
could be gravely affected by extrapolation, even if special care
is taken to collect training data that cover sufficiently the input
space in terms of the state variables. The reason is that during
the network training phase, each input vector does not include
a setpoint value, but rather the next value of the controlled

variable; the latter is substituted by the setpoint  k only

during the controller operation. Therefore, depending on the

relative values of  kx and  k and the sampling time of

the controller, it may be infeasible to move the system from its

current state value  kx to the desired setpoint value  k ,

within a single discrete time period. In such a case, the neural
controller will inevitably be asked to extrapolate, as it is
obvious that no similar examples have been used during the
training phase of the RBF network.

The inclusion of a concept widely used in chemometrics,
known as the applicability domain (AD) of the model, has
been shown to improve the performance [9] of inverse NN
controllers. AD is used in order to give an indication on
whether a model performs extrapolation and thus characterize
the reliability of the model prediction. According to the AD
criterion, the following equation defines the marginal
condition for avoiding extrapolation:

          
1 1

3
TT N

k k k k
K

 
 

         x U U x (11)

where N is the number of input variables, K is the number of
training data and U is a matrix containing all input training
data. Eq. 11 is a second-order equation with respect to the
current setpoint value ω(k). Its two solutions ωmin(k) and
ωmax(k) actually define the lower and upper bounds on the
value of ω(k) that guarantee that extrapolation is avoided. In
many cases it is desirable to tighten those limits, e.g. in order

System

under

control

State

vector
RBF

Network

Controller

Manipulated

variable

 v k

Setpoint

 k

 kx

Fig. 3. A direct neural controller based on an inverse RBF model

System

under

control

Solve the

optimization

problem subject

to constraints

Manipulated

variableSetpoint

RBF Networks for

future state estimation

   1 ,...,ˆ ˆ py k y k h     ,..., 1cv k v k h 

 k  v k

 1k x

Fig. 2. Integration of RBF model to the MPC controller

2014 6th Computer Science and Electronic Engineering Conference (CEEC) University of Essex, UK

978-1-4799-6692-9/14/$31.00 ©2014 IEEE 93

to account for inaccuracies in the training data. This is
accomplished by dividing the length of the line segment
between ωmin(k) and ωmax(k) by a narrowing parameter r,
where r>1. Thus, a narrower AD is produced whose bounds
are given by:

 
       

 
       

min max

min

max min

max

1 1

2

1 1

2

r k r k
k

r

r k r k
k

r

 


 


  
 

  
 

 (12)

In cases where the setpoint ω(k) falls outside of the
narrowed limits calculated by (12), it is substituted by the
closest of these limits, so as to keep the input vector inside the
narrowed AD. Thus, a requested setpoint value ωRE(k)
replaces the original one and the control law becomes:

       RERBF ,v k k k x (13)

The narrowing parameter is also used as a means for
tuning the neural controller, as larger values of r imply that
control actions will be more conservative, whereas smaller
values of r will trigger more aggressive control actions.

IV. CASE STUDY: CONTROL OF A NONLINEAR CSTR

A. System description

This section presents a comparison between INCAD and
the neural-based MPC (NMPC) controller described in the
previous section. Both controllers are evaluated on the control
of a simulated non-isothermal CSTR, where an exothermal
irreversible reaction between sodium thiosulfate and hydrogen
peroxide is taking place:

2 2 3 2 2 2 3 6 2 4 22 4 4Na S O H O Na S O Na SO H O    (14)

This process is described by the following mass and
energy balances [13]:

 

 

2

,

2

2 exp

()
2 exp ()

A

A in A A

R

in A j

p p

dC F E
C C k C

dt V RT

HdT F E UA
T T k C T T

dt V c RT V c




 

 
    

 

  
      

 

 (15)

where V is the volume of the CSTR; (ΔH)R is the heat of the
reaction; –E/R, ko, cp, ρ are constants of the reaction and the
reactants; F is the flow rate into the reactor; CA,in is the inlet
concentration of the reactant Na2S2O3; CA is the concentration
of Na2S2O3 inside the reactor; Tin is the inlet temperature; T is
the temperature inside the reactor; Tj is the temperature of the
coolant and UA is the overall heat-transfer coefficient between
the cooling coil and the reactor contents. The values of the
process parameters can be found in [9].

 It is well known that this type of CSTR has normally
three steady-state points, an upper and a lower one which are
stable, and a middle one which is unstable. Though it is
relatively easy to control the CSTR around the individual
upper or lower steady-state point, controlling the CSTR

around the unstable steady-state point is a rather challenging
task.

The CSTR was simulated by solving the system of ODEs
in (15). The objective was to apply the proposed neural
controller in order to control the concentration CA inside the
CSTR using the temperature of the coolant Tj as the
manipulated variable, assuming that both state variables (CA,
T) can be measured in real time.

B. RBF model training

In order to generate data for training the RBF models
needed for the two controllers, random changes from a
uniform distribution were applied to the coolant temperature Tj
every 0.5 seconds, within the limits 0 – 500. Using the
described configuration, 60000 data points were collected
from the CSTR. The data points were split into a training
dataset of 42000 data points and a validation one of 18000
data points.

In the case of the indirect NMPC controller, the RBF
model is set up so as to predict the value of the controlled
variable at the next time instant, given the full state vector and
the manipulated variable at the current time instant k:

         1 RBF , ,A A jC k C k T k T k  (16)

Eq. (16) indicates that in order to calculate future values of
CA throughout the prediction horizon, future values of the
second state variable T should be used as inputs, e.g.

prediction of  2AC k  requires an estimation of  1T k  .

Therefore, a second RBF model is also trained using the same
input variables:

         1 RBF , ,A jT k C k T k T k  (17)

After collecting the training data, an exhaustive search was
performed, testing partitions ranging from 4 to 100 fuzzy sets.
In each case, the best network was selected based on the Root
Mean Square Error (RMSE) value on the validation dataset.
Table I shows the results corresponding to the best network
found for the two state variables, including the number of

fuzzy sets, RBF centers and the RMSE and 2R pointers on the
validation dataset. It should be noted that the statistical
pointers used in this paper for facilitating comparison between
the two controllers are defined in [9].

As far as the INCAD controller is concerned, an inverse
model was trained; the inverse model predicts the value of the

manipulated variable  jT k that must be applied at the

current time instant, given the current state vector, so that the
concentration in the next time instant will be equal to

TABLE I

SPECIFICATIONS AND STATISTICS FOR THE BEST TRAINED RBF NETWORK

Parameters
NMPC

CA model

NMPC

T model

INCAD

inverse model

Fuzzy Partition 34 34 88

RBF Centers 449 449 726

RMSE validation 0.005 0.788 18.76

R2 validation 0.999 0.999 0.965

2014 6th Computer Science and Electronic Engineering Conference (CEEC) University of Essex, UK

978-1-4799-6692-9/14/$31.00 ©2014 IEEE 94

 1AC k  :

         RBF , , 1j A AT k C k T k C k  (18)

Although model (18) was trained on the same collected
data with models (16-17), it was found that a significantly
denser fuzzy partition was needed in order to produce the best
RMSE value, resulting to a higher number of RBF centers.
The RMSE and R2 pointers found for the inverse model case,
indicate a lower accuracy compared to the accuracy achieved
for the two state prediction models used by MPC. This can be
attributed to the nature of the inverse model function g, which,
in the general case is expected to be more difficult to
approximate compared to the function f representing the state
prediction model.

C. Controller tuning

Tuning for both controllers was performed using a trial and
error procedure. In both cases, the objective was to achieve the
fastest possible response without generating large overshoots.
Regarding the NMPC controller, the size of the control
horizon was set equal to 5 time steps, as longer horizons were
found to increase the computational load of the optimization
problem, without improving the response. The prediction
horizon was set so as to give enough time to the CSTR to
reach equilibrium after imposing the last control move. The
error and move suppression weights were selected so as to
avoid oscillations, without significantly delaying system
response.

As far as the INCAD controller is concerned, the tuning

procedure boils down to the selection of a single parameter,
i.e. the narrowing parameter r. A value of 5r  was selected,

as it was found to provide a balance between aggressive
behavior with fast but oscillatory response, to conservative
behavior with no oscillations, but slower response. The
parameters used for both controllers are summarized on Table
II.

D. Results and Discussion

The performance of the two control schemes was
evaluated in a setpoint tracking problem. To be more specific,
a test comprising a series of setpoint changes was improvised,
aiming to cover the middle unstable steady state point, as well
as other parts of the CSTR operating region.

The responses for NMPC and INCAD, together with the
setpoint changes are shown in Fig. 4a, whereas Fig. 4b depicts
the respective control actions. The mean absolute error
(MAE), mean absolute steady-state error (MASSE), mean
control action calculation time (MCACT) and maximum
control action calculation time (MaxCACT) for both control
schemes are summarized on Table III. Computational times
were measured on a PC with an Intel® Core™ i7 processor (2.9
GHz) and 8GB of RAM. It can be seen that both controllers
succeed in driving the CSTR successfully through the applied
setpoint changes, including the region around 0.7, which
corresponds to the unstable equilibrium point.

The INCAD controller exploits the inverse model, while
the incorporation of the narrowed AD criterion helps to
eliminate extrapolation. The result is a smooth response,
avoiding any overshoots. On the other hand, the benefits of
incorporating an optimization procedure to the NMPC control
framework are manifested through faster responses and a
significantly lower MAE value compared to the INCAD
controller. INCAD just calculates one of possibly many
feasible actions that moves the system towards the setpoint,
whereas NMPC performs a search among candidate sequences

0,0

0,2

0,4

0,6

0,8

0 10 20 30 40 50 60

C
A

(m
o
l/
l)

Simulation time

Setpoint

INCAD (=5)

NMPC

r

0

100

200

300

400

500

0 10 20 30 40 50 60

T
j
(K

)

Simulation time

INCAD (=5)

NMPC

r

 (a) (b)

Fig. 4. Setpoint tracking problem: (a) Controller responses, (b) Controller actions

TABLE II

CONTROLLER PARAMETERS

Parameter Symbol Value

NMPC Controller

Error weights Ω 1500
Move suppression weights Θ 1

Control horizon size hc 5
Prediction horizon size hp 20

INCAD Controller

Narrowing parameter r 5

Both Controllers

Manipulated variable lower bound vmin 0
Manipulated variable upper bound vmax 500

TABLE III

SIMULATION RESULTS

Parameter NMPC INCAD

MAE 0.06 0.11
MASSE 0.0009 0.0002

MCACT (s) 0.75 0.0015
MaxCACT (s) 3.79 0.0018

2014 6th Computer Science and Electronic Engineering Conference (CEEC) University of Essex, UK

978-1-4799-6692-9/14/$31.00 ©2014 IEEE 95

of moves to find the optimal course of action. It should be
noted, however, that although NMPC is the first to reach the
setpoint in all the applied changes, it exhibits a high overshoot
at the final setpoint change.

Another benefit from NMPC derived from the formulation
of the optimization problem, is related to the control actions. It
can be seen that following each setpoint change, the INCAD
controller initially chooses oscillatory control moves which
progressively decay to a steady value. NMPC on the other
hand, incorporates a move suppression term in the objective
function, which helps to avoid excessive oscillations in the
control moves. It should be noted, however, that NMPC
implementation requires to tune a significantly increased
number of parameters compared to INCAD.

As far as steady-state error is concerned, both controllers
manage to reach near the setpoint values, however, the
INCAD controller results to much lower MASSEs than
NMPC. This is despite the fact that the inverse model used by
INCAD exhibits lower accuracy compared to the NMPC
predictive models. This could be attributed to the fact that the
models used by NMPC perform multiple-step ahead
prediction, which magnifies the prediction error, but also to
the incorporation of the AD by INCAD, which helps the latter
to reduce modelling error by avoiding extrapolation.

Finally, an important factor, especially related to real-
world implementation of neural controllers, is the time needed
for calculating the control action. In this field, the INCAD
controller has the absolute advantage, as its output is the result
of one function evaluation. In fact, INCAD never exceeds
1.8ms in calculating the control action. The average time
needed by NMPC to calculate the control actions is orders of
magnitude higher (0.75s) due to the computational burden
imposed by solving the optimization problem. To make things
worse, NMPC calculations become much slower in time
instances when a setpoint change occurs, and can reach up to
3.79s. This can be explained taking into account that NMPC
optimization uses as an initial guess the solution generated by
the solver during the previous time instant. However, when the
setpoint changes, possibly a radical alteration in the previously
calculated course of action is needed, significantly delaying
the solution of the optimization problem.

V. CONCLUSION

This work presents a comparison between two control
schemes based on RBF networks, namely a novel direct
inverse neural controller based on the AD criterion and an
indirect MPC controller using neural models to acquire
predictions for a future horizon. A highly nonlinear system

with unstable equilibrium points is used as benchmark. Results
show that the NMPC controller exhibits faster responses with
less oscillatory control moves. The INCAD controller,
however, exhibits lower steady state errors, less overshoot and
more importantly is able to calculate the control action in
orders of magnitude less time compared to NMPC. Therefore,
INCAD can provide satisfactory control performance, while at
the same allowing for very fast control action calculation, a
fact which can expand its real-world implementation potential
to systems with fast dynamics, as opposed to NMPC.

Future research plans include more extensive testing of the
two methodologies on different control problems including
disturbance rejection and unmodeled dynamics, as well as
application on different nonlinear systems.

REFERENCES

[1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd

ed. Upper Saddle River, NJ: Prentice Hall International, 1999.

[2] P. J. Antsaklis. (1990, Apr.) Special Issue on 'Neural Networks in
Control Systems'. IEEE Contr. Syst. Mag. 3-87.

[3] K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gawthrop, "Neural

networks for control systems - A survey," Automatica, vol. 6, pp.
1083-1112, 1992.

[4] A. Alexandridis, H. Sarimveis and G. Bafas, "A new algorithm for

online structure and parameter adaptation of RBF networks,"
Neural Networks, vol. 16, pp. 1003-1017, Sep. 2003.

[5] M. Lawrynczuk, "Training of neural models for predictive

control," Neurocomputing, vol. 73, pp. 1332-1343, May 2010.
[6] A. Alexandridis and H. Sarimveis, "Nonlinear adaptive model

predictive control based on self-correcting neural network

models," AICHE J, vol. 51, pp. 2495-2506, 9 Jun. 2005.
[7] T. Waegeman, F. Wyffels and B. Schrauwen, "Feedback Control

by Online Learning an Inverse Model," in IEEE T Neural Net

Learn Syst, vol. 23, pp. 1637-1648, 2012.
 [8] J. Chia-Feng and C. Jung-Shing, "A Recurrent Fuzzy-Network-

Based Inverse Modeling Method for a Temperature System

Control," IEEE T Syst. Man Cy. C, vol. 37, pp. 410-417, May
2007.

[9] A. Alexandridis, M. Stogiannos, A. Kyriou and H. Sarimveis, "An
offset-free neural controller based on a non-extrapolating scheme

for approximating the inverse process dynamics," J Process

Contr., vol. 23, pp. 968-979, Aug. 2013.
[10] C. Darken and J. Moody, "Fast adaptive k-means clustering: some

empirical results," in International Joint Conference on Neural

Networks (IJCNN), San Diego, CA, USA, 1990, pp. 233-238.
[11] A. Alexandridis and E. Chondrodima, "A medical diagnostic tool

based on radial basis function classifiers and evolutionary

simulated annealing," J Biomed. Inform., vol. 49, pp. 61-72, Jun
2014.

[12] A. Alexandridis, "Evolving RBF neural networks for adaptive soft-

sensor design," Int. J Neural Syst., vol. 23, p. 1350029, 20 Aug.
2013.

[13] N. Kazantzis and C. Kravaris, "Synthesis of State Feedback

Regulators for Nonlinear Processes," Chem. Eng. Sci., vol. 55, pp.
3437-3449, 2000.

2014 6th Computer Science and Electronic Engineering Conference (CEEC) University of Essex, UK

978-1-4799-6692-9/14/$31.00 ©2014 IEEE 96

