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Abstract—This work presents a comparison between direct 

and indirect neural control methods based on the radial basis 

function (RBF) architecture. As far as direct control schemes are 

concerned, a novel direct inverse neural RBF controller taking 

into account the applicability domain criterion (INCAD) is 

utilized. Α model predictive control (MPC) formulation based on 

RBF networks is tested as an example of indirect method. The 

performances of the two control schemes are evaluated and 

compared on a highly nonlinear control problem, namely control 

of a continuous stirred tank reactor (CSTR) with multiple stable 

and unstable steady states. Results show that the INCAD 

controller is able to provide satisfactory performance, while 

performing almost instant calculation of the control actions. 

MPC on the other hand, outperforms the INCAD in terms of 

speed of responses, due to the built-in optimization capability; 

however, the lengthy procedure of solving online the optimization 

problem impedes the practical use of MPC on systems with fast 

dynamics.  

Keywords—Direct control; indirect control; model predictive 

control ; neurocontrol; radial basis function 

I. INTRODUCTION  

Artificial neural networks (NNs) [1] have been used 
extensively during the last decades for designing novel 
automatic control schemes [2, 3]. The success of NN-based 
controllers is mainly due to their ability to learn from 
experimental data using specially designed efficient online or 
offline training methods, a fact which makes them particularly 
useful in cases where conventional methodologies fail to 
develop appropriate dynamic models of the system and/or 
compute the control law. Other useful properties of NNs 
include tolerating faults and uncertainties, acting as universal 
approximators, and performing massive parallel processing. 
Among the different NN architectures used for designing 
control systems, radial basis function (RBF) networks [4] 
present some important advantages including better 
approximation capabilities, simpler network structures, and 
faster learning algorithms. 

There are two basic design approaches for formulating NN-

based control strategies: Indirect design, where the NN serves 
as the dynamic model of the system, predicting the output or 
the complete state vector and direct design where the NN 
approximates the inverse system dynamics and acts as a 
controller. The indirect design approach is usually coupled 
with the Model Predictive Control (MPC) methodology, where 
NN methodologies are applied on historical dynamic input-
output data to construct the nonlinear dynamic predictive 
model of the system [5, 6]. An optimization procedure is then 
applied to find the optimum sequence of moves that will drive 
the system to the desired conditions. MPC techniques can 
handle multiple input–multiple output (MIMO) systems, and 
take into account input/output/state constraints and 
system/model mismatches. 

Despite their advantages, indirect design methodologies 
based on the MPC concept share an important drawback: the 
nonlinear optimization problem must be solved in real time, 
before the next sample is collected from the system; 
nevertheless, the available time between two subsequent time 
instants may not be sufficient even for satisfying the 
requirements of suboptimal MPC. This limitation prevents the 
application of indirect design methodologies to systems with 
fast dynamics. Direct design techniques on the other hand, 
completely avoid the solution of the optimization problem, 
using the NN as an explicit control law. This means that at 
each discrete time instant, the NN directly calculates the values 
of the manipulated variables that are used as inputs to the 
system [7, 8]. Past values of input and output (or state) 
variables along with the desired set-points constitute the input 
vector to the inverse NN model. The efficiency of direct design 
methodologies stems from the fact that their implementation 
requires only the evaluation of a nonlinear function at each 
time instant, as opposed to the lengthy solution of the nonlinear 
optimization problem. 

In this work we select a novel direct neural control scheme 
with the additional ability to avoid extrapolation based on the 
applicability domain (AD) concept [9] and test it against a 
neural indirect MPC controller. Both controllers, which are 
based on the RBF architecture, are applied to the control of a 
continuous stirred chemical reactor (CSTR), exhibiting 
multiple steady states. The work of M. Stogiannos was supported by the Greek State Scholarship 

Foundation (IKY), through the IKY Fellowships of Excellence for 
Postgraduate Studies in Greece - Siemens Program. 
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The rest of this paper is organized as follows: In the next 
section we give a brief introduction to RBF networks and the 
FM algorithm. In Section 3 we describe the development of 
RBF-based neural controllers, including the direct and indirect 
approaches. Section 4 presents a comparison of the two 
different approaches when applied to a nonlinear control 
problem. Finally, the paper ends with the concluding section. 

II. RBF NETWORKS AND THE FM ALGORITHM 

RBF networks form a special neural network architecture 
that consists of three layers (Fig. 1).The RBF network training 
procedure corresponds to determining the hidden node basis 
function parameters and the output-layer weights. Standard 
approaches in RBF network training, decompose this problem 
in two steps: In the first step, the hidden layer basis function 
parameters are obtained using an unsupervised clustering 
technique, like the k-means algorithm [10]. The latter 
postulates an arbitrary number of RBF centers and then 
calculates their locations, the final selection being made 
through a tedious trial-and-error procedure. An alternative to 
this time-consuming approach was given by the fuzzy means 
(FM) algorithm [4], which has the ability to calculate in one 
step the number and locations of the hidden node centers. The 
FM algorithm has found many successful applications in fields 
like medical diagnosis [11], soft-sensor development [12], etc.  

The FM algorithm, is based on a fuzzy partition of the input 
space, where the domain of each input variable is partitioned 
into a number of fuzzy sets. Combining N one-dimensional 
fuzzy sets, where N is the number of input dimensions, one can 
generate a multi-dimensional fuzzy subspace. These fuzzy 
subspaces form a grid where each node is candidate for 
becoming an RBF center. The objective of the FM algorithm is 
to assemble the RBF network hidden layer by selecting only a 
small subset of the fuzzy subspaces. This selection is based on 
a hyper-circle placed around each fuzzy subspace center. The 
hyper-circle marks a boundary between input vectors that 
receive non-zero or zero membership degrees to each particular 
fuzzy subspace. Having defined the membership function, the 
algorithm proceeds with finding the subset of fuzzy subspaces 
that assign a nonzero multidimensional degree to all input 
training vectors. This is accomplished using a non-iterative 
algorithm which requires only one pass of the input data, thus 
rendering the center calculation procedure extremely fast, even 
in the presence of a large database of input examples. More 

details about the FM algorithm can be found in [4]. 

The second step in RBF training involves determination of 
the output-layer weights; this step is usually implemented by 
linear least squares regression, which guarantees a global 
minimum as far as the weights are concerned.  

III. NEURAL CONTROLLER DESIGN BASED ON RBF NETWORKS 

A. Indirect design using MPC 

Let us assume that the system under control is a Single 
Input-Single Output (SISO) system with N state variables. A 
discrete dynamic model of the system correlates the next value 
of the output (controlled) variable with the current values of 
the state variables and the input (manipulated) variable: 

       1 ,y k f k v k  x  (1) 

where y is the controlled variable, x is the state vector and v is 
the manipulated variable. We can assume, without loss of 
generality, that f is a nonlinear function. 

MPC controllers typically make use of a direct dynamic 
model of the system, thus approximating (1). Under the 
assumptions that all state variables are measurable and a 
sufficient number of training examples is available, the FM 
algorithm can be used to approximate the unknown function f, 
providing a model able to predict the next value of the output 
variable based on previous values of the states and the input: 

       1 RBF ,y k k v k  x  (2) 

where RBF is the nonlinear function implemented by the RBF 
network, calculated through (2). Notice that this model cannot 
by itself be used to control the plant, as it is trained only to 
identify the unknown system and predict the result of 
candidate control actions. In order to make use of (2), at each 
discrete time step an optimization problem is formulated, 
where the objective is to minimize the difference between the 
set point and the predictions of the model. The solution to this 
problem is the optimum sequence of control moves that drives 
the controlled variable to the set point value. 

In a typical MPC implementation, the objective function at 
each discrete time instant k is a combination of two targets: a) 
minimization of the distances between the predicted output 
values and the set point and b) minimization of the control 
moves: 

        
2 2

( ),..., ( )
1 0

ˆmin

p c

c

h h
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v k v k h

i i

y k i k v k i 


 

         (3) 

where Δv is the difference between two subsequent control 
moves; Θ and Ω are the error and move suppression weights; 
hc and hp are the control and prediction horizons, 
respectively, ŷ is the model prediction for the controlled 

variable, which is assumed to be one of the state variables, and 
 is the set point value. 

The minimization problem is solved subject to a number of 
constraints: 

 
Fig. 1.   Typical structure of an RBF network 
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c( ) 0, 1 pv k i h i h       (7) 

where ( )E k  is the current error between the actual output 

measurement and the model prediction. Eqs. (4)-(5) denote 
that the modeling error measured at time point k is assumed to 
be the same over the entire prediction horizon. Notice that 
multiple calls of the RBF model (2) are needed to calculate the 
future values of the controlled variable y, throughout the 
prediction horizon. Eq. (6) poses upper and lower bounds on 
the values of the manipulated variables, while (7) denotes that 
no control moves are allowed after the end of the control 
horizon. The set of constraints can be augmented by imposing 
upper and lower bounds on the system output or the state 
vector. Figure 2 shows schematically how the RBF model and 
the MPC methodology are integrated.  

B. Direct design using inverse RBF models 

The concept of a direct controller is simpler compared to 
the indirect MPC scheme described in the previous subsection. 
Direct design implementations are based on a discrete inverse 
dynamic model of the system under control that can be 
formulated as follows: 

       , 1v k g k y k x  (8) 

where g is the inverse dynamic function of the system. 
Substituting the next value of the controlled variable y(k+1) in 
(8) with the current value of the setpoint ω(k), essentially 
provides a control law which can be used for calculating 
which value of the manipulated variable should be applied at 
any discrete time instant k, in order to drive the system from 
its current state, to the setpoint: 

       ,v k g k k x  (9) 

Under the same assumptions of measurable states and 
adequate number of training examples, the FM algorithm can 
be used to approximate the unknown function g. The RBF 
approximator of the inverse dynamics can then act as a 

controller, receiving at each discrete time instant the desired 
set-point value and the values of the state variables and 
producing the control command: 

       RBF ,v k k k x  (10) 

The operation of such a controller is depicted in Fig. 3. 

It is well known that neural network models – as well as 
other black-box modeling techniques – have a limited ability 
for generalization. This comes as a direct result of the 
inadequacy of such models to provide reliable predictions in 
regions of the input space which have not been covered 
sufficiently in the training dataset, i.e. the inability to 
successfully perform extrapolation.  The performance of the 
inverse controller based on RBF networks described by (10), 
could be gravely affected by extrapolation, even if special care 
is taken to collect training data that cover sufficiently the input 
space in terms of the state variables. The reason is that during 
the network training phase, each input vector does not include 
a setpoint value, but rather the next value of the controlled 

variable; the latter is substituted by the setpoint  k  only 

during the controller operation. Therefore, depending on the 

relative values of  kx  and  k  and the sampling time of 

the controller, it may be infeasible to move the system from its 

current state value  kx  to the desired setpoint value  k , 

within a single discrete time period. In such a case, the neural 
controller will inevitably be asked to extrapolate, as it is 
obvious that no similar examples have been used during the 
training phase of the RBF network. 

The inclusion of a concept widely used in chemometrics, 
known as the applicability domain (AD) of the model, has 
been shown to improve the performance [9] of inverse NN 
controllers. AD is used in order to give an indication on 
whether a model performs extrapolation and thus characterize 
the reliability of the model prediction. According to the AD 
criterion, the following equation defines the marginal 
condition for avoiding extrapolation: 

          
1 1

3
TT N

k k k k
K

 
 

         x U U x  (11) 

where N is the number of input variables, K is the number of 
training data and U is a matrix containing all input training 
data. Eq. 11 is a second-order equation with respect to the 
current setpoint value ω(k). Its two solutions ωmin(k) and 
ωmax(k) actually define the lower and upper bounds on the 
value of ω(k) that guarantee that extrapolation is avoided. In 
many cases it is desirable to tighten those limits, e.g. in order 
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Fig. 3.   A direct neural controller based on an inverse RBF model 
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Fig. 2.   Integration of RBF model to the MPC controller 
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to account for inaccuracies in the training data. This is 
accomplished by dividing the length of the line segment 
between ωmin(k) and ωmax(k) by a narrowing parameter r, 
where r>1. Thus, a narrower AD is produced whose bounds 
are given by: 

 

 
       

 
       

min max

min

max min

max

1 1

2

1 1

2

r k r k
k

r

r k r k
k

r

 


 


  
 

  
 

 (12) 

In cases where the setpoint ω(k) falls outside of the 
narrowed limits calculated by (12), it is substituted by the 
closest of these limits, so as to keep the input vector inside the 
narrowed AD. Thus, a requested setpoint value ωRE(k) 
replaces the original one and the control law becomes: 

       RERBF ,v k k k x  (13) 

The narrowing parameter is also used as a means for 
tuning the neural controller, as larger values of r imply that 
control actions will be more conservative, whereas smaller 
values of r will trigger more aggressive control actions.  

IV. CASE STUDY: CONTROL OF A NONLINEAR CSTR 

A. System description 

This section presents a comparison between INCAD and 
the neural-based MPC (NMPC) controller described in the 
previous section. Both controllers are evaluated on the control 
of a simulated non-isothermal CSTR, where an exothermal 
irreversible reaction between sodium thiosulfate and hydrogen 
peroxide is taking place: 

 
2 2 3 2 2 2 3 6 2 4 22  4    4Na S O H O Na S O Na SO H O     (14) 

This process is described by the following mass and 
energy balances [13]: 
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 (15) 

where V is the volume of the CSTR;  (ΔH)R is the heat of the 
reaction; –E/R, ko, cp, ρ are constants of the reaction and the 
reactants; F is the flow rate into the reactor; CA,in is the inlet 
concentration of the reactant Na2S2O3; CA is the concentration 
of Na2S2O3 inside the reactor; Tin is the inlet temperature; T is 
the temperature inside the reactor; Tj is the temperature of the 
coolant and UA is the overall heat-transfer coefficient between 
the cooling coil and the reactor contents. The values of the 
process parameters can be found in [9]. 

 It is well known that this type of CSTR has normally 
three steady-state points, an upper and a lower one which are 
stable, and a middle one which is unstable. Though it is 
relatively easy to control the CSTR around the individual 
upper or lower steady-state point, controlling the CSTR 

around the unstable steady-state point is a rather challenging 
task. 

The CSTR was simulated by solving the system of ODEs 
in (15). The objective was to apply the proposed neural 
controller in order to control the concentration CA inside the 
CSTR using the temperature of the coolant Tj as the 
manipulated variable, assuming that both state variables (CA, 
T) can be measured in real time. 

B. RBF model training 

In order to generate data for training the RBF models 
needed for the two controllers, random changes from a 
uniform distribution were applied to the coolant temperature Tj 
every 0.5 seconds, within the limits 0 – 500. Using the 
described configuration, 60000 data points were collected 
from the CSTR. The data points were split into a training 
dataset of 42000 data points and a validation one of 18000 
data points. 

In the case of the indirect NMPC controller, the RBF 
model is set up so as to predict the value of the controlled 
variable at the next time instant, given the full state vector and 
the manipulated variable at the current time instant k: 

         1 RBF , ,A A jC k C k T k T k   (16) 

Eq. (16) indicates that in order to calculate future values of 
CA throughout the prediction horizon, future values of the 
second state variable T should be used as inputs, e.g. 

prediction of  2AC k  requires an estimation of  1T k  . 

Therefore, a second RBF model is also trained using the same 
input variables: 

         1 RBF , ,A jT k C k T k T k   (17) 

After collecting the training data, an exhaustive search was 
performed, testing partitions ranging from 4 to 100 fuzzy sets. 
In each case, the best network was selected based on the Root 
Mean Square Error (RMSE) value on the validation dataset. 
Table I shows the results corresponding to the best network 
found for the two state variables, including the number of 

fuzzy sets, RBF centers and the RMSE and 2R  pointers on the 
validation dataset. It should be noted that the statistical 
pointers used in this paper for facilitating comparison between 
the two controllers are defined in [9]. 

As far as the INCAD controller is concerned, an inverse 
model was trained; the inverse model predicts the value of the 

manipulated variable  jT k  that must be applied at the 

current time instant, given the current state vector, so that the 
concentration in the next time instant will be equal to 

 

TABLE I 

SPECIFICATIONS AND STATISTICS FOR THE BEST TRAINED RBF NETWORK 

Parameters 
NMPC  

CA model 

NMPC  

T model 

INCAD 

inverse model 

Fuzzy Partition 34 34 88 

RBF Centers 449 449 726 

RMSE validation 0.005 0.788 18.76 

R2 validation 0.999 0.999 0.965 
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 1AC k  :  

         RBF , , 1j A AT k C k T k C k   (18) 

Although model (18) was trained on the same collected 
data with models (16-17), it was found that a significantly 
denser fuzzy partition was needed in order to produce the best 
RMSE value, resulting to a higher number of RBF centers. 
The RMSE and R2 pointers found for the inverse model case, 
indicate a lower accuracy compared to the accuracy achieved 
for the two state prediction models used by MPC. This can be 
attributed to the nature of the inverse model function g, which, 
in the general case is expected to be more difficult to 
approximate compared to the function f representing the state 
prediction model.  

C. Controller tuning 

Tuning for both controllers was performed using a trial and 
error procedure. In both cases, the objective was to achieve the 
fastest possible response without generating large overshoots. 
Regarding the NMPC controller, the size of the control 
horizon was set equal to 5 time steps, as longer horizons were 
found to increase the computational load of the optimization 
problem, without improving the response. The prediction 
horizon was set so as to give enough time to the CSTR to 
reach equilibrium after imposing the last control move. The 
error and move suppression weights were selected so as to 
avoid oscillations, without significantly delaying system 
response.  

As far as the INCAD controller is concerned, the tuning 

procedure boils down to the selection of a single parameter, 
i.e. the narrowing parameter r. A value of 5r   was selected, 

as it was found to provide a balance between aggressive 
behavior with fast but oscillatory response, to conservative 
behavior with no oscillations, but slower response. The 
parameters used for both controllers are summarized on Table 
II. 

D. Results and Discussion 

The performance of the two control schemes was 
evaluated in a setpoint tracking problem. To be more specific, 
a test comprising a series of setpoint changes was improvised, 
aiming to cover the middle unstable steady state point, as well 
as other parts of the CSTR operating region.  

The responses for NMPC and INCAD, together with the 
setpoint changes are shown in Fig. 4a, whereas Fig. 4b depicts 
the respective control actions. The mean absolute error 
(MAE), mean absolute steady-state error (MASSE), mean 
control action calculation time (MCACT) and maximum 
control action calculation time (MaxCACT) for both control 
schemes are summarized on Table III. Computational times 
were measured on a PC with an Intel® Core™ i7 processor (2.9 
GHz) and 8GB of RAM. It can be seen that both controllers 
succeed in driving the CSTR successfully through the applied 
setpoint changes, including the region around 0.7, which 
corresponds to the unstable equilibrium point.  

The INCAD controller exploits the inverse model, while 
the incorporation of the narrowed AD criterion helps to 
eliminate extrapolation. The result is a smooth response, 
avoiding any overshoots. On the other hand, the benefits of 
incorporating an optimization procedure to the NMPC control 
framework are manifested through faster responses and a 
significantly lower MAE value compared to the INCAD 
controller. INCAD just calculates one of possibly many 
feasible actions that moves the system towards the setpoint, 
whereas NMPC performs a search among candidate sequences 
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Fig. 4.   Setpoint tracking problem: (a) Controller responses, (b) Controller actions 

TABLE II 

CONTROLLER PARAMETERS 

Parameter Symbol Value 

NMPC Controller 

Error weights Ω 1500 
Move suppression weights Θ 1 

Control horizon size hc 5 
Prediction horizon size hp 20 

INCAD Controller 

Narrowing parameter r 5 

Both Controllers 

Manipulated variable lower bound vmin 0 
Manipulated variable upper bound vmax 500 

 

TABLE III 

SIMULATION RESULTS 

Parameter NMPC INCAD 

MAE 0.06 0.11 
MASSE 0.0009 0.0002 

MCACT (s) 0.75 0.0015 
MaxCACT (s) 3.79 0.0018 
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of moves to find the optimal course of action. It should be 
noted, however, that although NMPC is the first to reach the 
setpoint in all the applied changes, it exhibits a high overshoot 
at the final setpoint change. 

Another benefit from NMPC derived from the formulation 
of the optimization problem, is related to the control actions. It 
can be seen that following each setpoint change, the INCAD 
controller initially chooses oscillatory control moves which 
progressively decay to a steady value. NMPC on the other 
hand, incorporates a move suppression term in the objective 
function, which helps to avoid excessive oscillations in the 
control moves. It should be noted, however, that NMPC 
implementation requires to tune a significantly increased 
number of parameters compared to INCAD.  

As far as steady-state error is concerned, both controllers 
manage to reach near the setpoint values, however, the 
INCAD controller results to much lower MASSEs than 
NMPC. This is despite the fact that the inverse model used by 
INCAD exhibits lower accuracy compared to the NMPC 
predictive models. This could be attributed to the fact that the 
models used by NMPC perform multiple-step ahead 
prediction, which magnifies the prediction error, but also to 
the incorporation of the AD by INCAD, which helps the latter 
to reduce modelling error by avoiding extrapolation.  

Finally, an important factor, especially related to real-
world implementation of neural controllers, is the time needed 
for calculating the control action. In this field, the INCAD 
controller has the absolute advantage, as its output is the result 
of one function evaluation. In fact, INCAD never exceeds 
1.8ms in calculating the control action. The average time 
needed by NMPC to calculate the control actions is orders of 
magnitude higher (0.75s) due to the computational burden 
imposed by solving the optimization problem. To make things 
worse, NMPC calculations become much slower in time 
instances when a setpoint change occurs, and can reach up to 
3.79s. This can be explained taking into account that NMPC 
optimization uses as an initial guess the solution generated by 
the solver during the previous time instant. However, when the 
setpoint changes, possibly a radical alteration in the previously 
calculated course of action is needed, significantly delaying 
the solution of the optimization problem.  

V. CONCLUSION 

This work presents a comparison between two control 
schemes based on RBF networks, namely a novel direct 
inverse neural controller based on the AD criterion and an 
indirect MPC controller using neural models to acquire 
predictions for a future horizon. A highly nonlinear system 

with unstable equilibrium points is used as benchmark. Results 
show that the NMPC controller exhibits faster responses with 
less oscillatory control moves. The INCAD controller, 
however, exhibits lower steady state errors, less overshoot and 
more importantly is able to calculate the control action in 
orders of magnitude less time compared to NMPC. Therefore, 
INCAD can provide satisfactory control performance, while at 
the same allowing for very fast control action calculation, a 
fact which can expand its real-world implementation potential 
to systems with fast dynamics, as opposed to NMPC.  

Future research plans include more extensive testing of the 
two methodologies on different control problems including 
disturbance rejection and unmodeled dynamics, as well as 
application on different nonlinear systems.  
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