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Abstract— This paper presents a nonlinear controller based on an 
inverse neural network model of the system under control. The 
neural controller is implemented as a Radial Basis Function 
(RBF) network trained with the powerful fuzzy means algorithm. 
The resulting controller is tested on a nonlinear DC motor 
control problem and the results illustrate the advantages of the 
proposed approach. 
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I.  INTRODUCTION  
Neural Networks (NNs) are a set of powerful mathematical 

tools that simulate the way that the human brain deals with 
information and the procedure of learning. NNs have the ability 
to identify and learn highly complex and nonlinear 
relationships from input-output data only, without the use of 
first principle equations describing the system. Neural 
networks are categorized to a variety of architectures, 
depending on the way the nodes of the neural network are 
interconnected and the calculations that each node performs. 

Radial basis function (RBF) networks [1] constitute a 
special network architecture that presents some remarkable 
advantages over other neural network types including better 
approximation capabilities, simpler network structures and 
faster learning algorithms. Not surprisingly, RBF networks 
have found many applications in different scientific areas like 
pattern recognition [2], optimization [3] and control [4]. 

The use of neural networks in control applications - 
including process control, robotics, industrial manufacturing 
and aerospace applications, among others - has experienced 
rapid growth in the last decades [5]. The ability of neural 
networks to model an unknown system without any prior 
knowledge for the system, based solely on input-output data 
from it, can be exploited in the control of complex and 
nonlinear plants. Indeed neural networks can offer an accurate 
model of the system under control, which can then be inversed 
through an optimization procedure in order to produce a 
control law that drives the predictions of the model (and thus 
the plant itself – assuming that the model is accurate enough) to 
the set point [6]. This procedure is a special case of a more 
generic control scheme known as Model Predictive Control 
(MPC), that has found many successful applications [7].   

Though the use of MPC methodologies offers several 
advantages, it involves solving online an optimization problem 
which in the case of nonlinear models can be rather 
computational demanding, while no optimality is guaranteed. 
This work presents a simpler implementation of a controller 
based on neural networks, where an RBF network learns 
directly the inverse law that governs the plant’s behavior, thus 
predicting the current value of the manipulated variable that 
will drive the system to the set point value within the next 
discrete time steps.  

The rest of this paper is organized as follows: In the next 
paragraph, we present the RBF neural network architecture and 
the fuzzy means training algorithm. In paragraph 3, we discuss 
the implementation of the RBF network as a neural controller 
and a case study where the proposed neural controller is 
applied to the control of a nonlinear DC motor. The paper 
concludes by outlining the advantages of the proposed 
approach. 

II. THE RBF NEURAL NETWORK ARCHITECTURE 

A. RBF Networks 

An RBF network can be considered as a special three layer 
neural network, which is linear with respect to the output 
parameters after fixing all the radial basis function centers and 
nonlinearities in the hidden layer.  The typical structure of an 
RBF network is shown in Fig. 1. The input layer distributes the 
N input variables to the L nodes of the hidden layer. Each node 
in the hidden layer is associated with a center, equal in 
dimension with the number of input variables. Thus, the hidden 
layer performs a nonlinear transformation and maps the input 
space onto a new higher dimensional space. The activity νl(xk) 
of the lth node is the Euclidean norm of the difference between 
the kth input vector and the node center and is given by:    
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Figure 1.  Radial Basis Function Network Architecture 

where K is the total number of data, [ ],1 ,2 ,,  ,  ,  T
k k k k Nx x x= …x

is the input vector and  ,1 ,2 ,ˆ ˆ ˆ ˆ[ ,  ,  ,  ]T
l l l l Nx x x=x …  is the center 

of the lth node. 

The output function of the node is a radially symmetric 
function. A typical choice, which was also used in this work, is 
the Gaussian function: 
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where σ is the width of the node. 

The final output ˆky  of the RBF network for the kth
 data 

point is produced by a linear combination of the hidden node 
responses, after adjusting the weights of the network 
appropriately: 
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Standard approaches in RBF network training, decompose 
the problem in two steps: In the first step, the parameters of the 
basis functions of the nodes (hidden layer) are obtained using 
the k-means algorithm [8], which is an unsupervised clustering 
method. The second step involves the determination of the 
output-layer weights by linear least squares regression. 
However, the k-means algorithm has three major drawbacks: 

• Several passes of all training examples are required. 
This iterated procedure increases the computational 
effort, especially when a large database is available. 

• The number of hidden nodes must be predefined by the 
user. This means that a trial and error procedure must 
be followed in order to obtain the optimum number of 
hidden nodes. 

• It depends on an initial random selection of centers, so 
that different sets of centers are obtained for different 
runs of the same network structure.  

Recently, an innovative approach called the fuzzy means 
algorithm has been introduced in order to replace the k-means 
algorithm in the selection of the hidden layer nodes [9]. The 
fuzzy means algorithm has several advantages over the typical 
approach, including faster computational times and automatic 
determination of the size of the network, and has been used 
successfully in a number of applications including estimation 
of critical properties of materials [10], online system 
identification [11], automatic control of industrial processes 
[6], variable selection problems [12] etc. A brief discussion 
about the fuzzy means algorithm is given below, while the 
interested reader is referred to the original publications.  

B. The fuzzy means algorithm 

Assuming a system with N input variables, the universe of 
discourse (domain) of each variable xi, 1, ...,i N∈ is evenly 

partitioned into ci triangular fuzzy sets: ,1 ,2 ,{ A , A , ...., A }
i

i i i c , 
1 i N≤ ≤ . Each fuzzy set can then be fully described by its 

center element ,i ja  and half of the respective width ,i jaδ . 
By expanding the idea of fuzzy partitioning in the entire 

input space, we can dismember it into C fuzzy subspaces, 
where: 
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Each fuzzy subset lA is a combination of N particular 
fuzzy sets and is represented as: 
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After creating the fuzzy partition, the determination of the 
appropriate node centers is reduced to the problem of 
generating a set of fuzzy subspaces which uniformly cover the 
input data distribution. In order to solve this problem, we use 
the notion of the multidimensional membership function 

( )( )l kμA x  of an input vector x(k) into Al [13]: 
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where ( )( )lrd kx  is the Euclidean relative distance between 
Al  and the input data vector ( )kx : 
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Obviously the fuzzy subspace that describes best an input 
vector is the one that corresponds to the smallest Euclidean 
relative distance. Thus the algorithm starts with the first data 
point x(1) and generates the first hidden node, whose center is 
the center location of the closest subspace. For all the 
remaining input examples x(k), k=2, 3, …, K, the method 
computes the Euclidean relative distances rdl(x(k)) between 
x(k) and the fuzzy subspaces, which have been generated so 
far. If the minimum of these distances is greater than unity 
then x(k) is not sufficiently described by any of the already 
created hidden nodes, and the algorithm generates a new node, 
by finding the closest subspace to x(k). If not, the algorithm 
proceeds to the next training example.  

It must be emphasized that opposed to the k-means 

algorithm, the fuzzy means technique does not need the 
number of clusters to be fixed before the execution of the 
method. Moreover, due to the fact that it is a one-pass 
algorithm, it is extremely fast even if a large database of input-
output examples is available.   

III. NEURAL CONTROL OF A NONLINEAR DC MOTOR 

A. The nonlinear DC motor 

Consider the DC motor depicted in Fig. 2, which is 
described by the following nonlinear state equations, derived 
using fundamental electrical and mechanical laws [14]: 
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where [ ]  r f a

T
i iω=x is the state vector,  T

a fV V= ⎡ ⎤⎣ ⎦u is the 

input vector and [ ]  r f a

T
i iω=y is the output vector. The 

notation is given in Table 1, together with values for each of 
the DC motor parameters. The system of nonlinear state 
equations is solved with numerical methods, thus providing a 
detailed dynamic simulation of the DC motor. 

B. Neural controller configuration 

The objective when controlling the DC motor depicted in 
Fig. 2, is to maintain the rotor angular speed ωr at the desired 
set-point value, using as manipulated variable the armature 
voltage Va. The field voltage Vf can be considered as a 
disturbance variable. Under this control scheme, a discrete 
neural controller should receive feedback for the current 
values of the state variables and the disturbance and produce 
the current value for the manipulated variable. The control 
configuration can be seen in Fig. 3. 

TABLE I.  NOTATION AND PARAMETER VALUES 

Parameters Symbol Value 
Rotor speed ωr State variable 
Armature current ia  State variable 
Field current if State variable 
Armature voltage Va Manipulated variable 
Field voltage Vf Disturbance  
Armature resistance Ra 10.5479Ω 
Field resistance Rf 320.6955Ω 
Armature inductance LAA 3.0948x10-6H 
Field inductance LFF 20.5245H 
Mutual inductance LAF 2.6116H 
Inertia J 0.0015kg·m2 
Coefficient of load torque BL 0.0042N·m·sec 

 
A simple way to design such a neural controller is to train 

a neural network to approximate the inverse law governing the 
system: 

   ( ) ( ) ( ) ( ) ( ) ( )( ), , , , 1a r f a f rV k NN k i k i k V k kω ω= +    (9) 

i.e. the neural network should predict the current value of the 
manipulated variable Va using as inputs the current values of 
the state vector x, the current value of the disturbance Vf and 
the next value of the controlled variable ωr. Once the training 
has been completed, then the neural network can be used as a 
controller that will predict the current value of the manipulated 
variable Va that will drive the DC motor to the set point value 
ωrSP  at the next discrete time step k+1. In order to make this 
prediction the neural controller will use as inputs the current 
values of the state vector, the disturbance and the set point: 

     
( ) ( ) ( ) ( ) ( )( ), , , , ( )a r f a f rSPV k NN k i k i k V k kω ω=

  
 (10)

 

C. Neural network model training 

In order to generate data for training the RBF network, the 
DC motor was excited by changing randomly the input 
variables Va and Vf  every 1 second. The random changes in the 
two input variables followed a normal distribution with mean 
and variance values shown in Table 2. Using the described 
configuration, 20000 data points were collected from the DC 
motor. The data points were split in half into training and 
validation datasets. In order to find the optimum number of 
fuzzy sets, the fuzzy means algorithm was applied to partitions 
from 4 to 26 fuzzy sets.  

 

 
Figure 2.  Nonlinear DC Motor 
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Figure 3.  Neural control configurat

TABLE II.  MEAN AND VARIANCE VALUES FOR T

Input variable Mean Variance 
Va 16V 12V 
Vf

 12V 4V 
 
The smallest Mean Absolute Relative Er

corresponded to a fuzzy partition of 16 
resulted in an RBF network with 205 hidde
presents two statistical pointers for the best
calculated on the validation dataset.  

D. Results and discussion 

In order to evaluate the resulting neural c
have created two separate case studies. The
test the controller performance in the tasks of
and disturbance rejection. For comparison p
also employed a standard PID controller
Simulink PID Tuner tool. 

For the first case study of set po
disturbance Vf was assumed to be constant 
while the set point changed randomly every
random changes in the set point were chos
distribution with mean 16rad/s and variance 

The results of the set point tracking ca
Fig. 4, where the responses of the two co
shown, together with the set point changes. I
both controllers manage to track accurate
changes. However, the neural controller r
faster compared to the PID response. Mo
controller avoids any oscillation, in con
controller. 

The second case study involves keeping
constant value while changing the value of th
be more specific, for this case study the 
angular speed ωr was set to a value equal to 
disturbance changed randomly every 1.5 sec
changes in the disturbance were chosen
distribution with mean 12V and variance 4V.
 

TABLE III.  STATISTICAL POINTERS ON THE VAL

Statistical Pointer Value 
MARE % 0.041137 
R2 0.99997 
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Figure 4.  Set point tracking: R

 
 
 
 
 
 
 
 
 
 
Figure 5.  Disturbance rejection:

 
The results of the disturban

Fig. 5, where the responses o
shown. Evidently, the two co
disturbance and maintain the D
However, once more the n
obviously superior compared to

 

IV. CO

This paper presents a novel 
nonlinear systems. The propos
approximating the inverse plan
network which receives as
disturbances and set point 
appropriate value for the manip
RBF network is performed us
which guarantees increased acc
times. The resulting controller
nonlinear DC motor in two c
tracking and disturbance reject
superior performance compared
the Simulink PID Tuner tool. 
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