Random Motion on Simple Graphs

Vassilis G. Papanicolaou • Effie G. Papageorgiou • Dimitris C. Lepipas

Received: 21 June 2010 / Revised: 17 October 2010 /
Accepted: 20 October 2010 / Published online: 10 November 2010
© Springer Science+Business Media, LLC 2010

Abstract

Consider a stochastic process that lives on n-semiaxes joined at the origin. On each ray it behaves as one dimensional Brownian Motion and at the origin it chooses a ray uniformly at random (Kirchhoff condition). The principal results are the computation of the exit probabilities and certain other probabilistic quantities regarding exit and occupation times.

Keywords Brownian motion •Kirchhoff condition•Exit probabilities • Exit times • Occupation times • Arc-sine law

AMS 2000 Subject Classifications $60 \mathrm{~J} 60 \cdot 60 \mathrm{~J} 65 \cdot 60 \mathrm{~J} 70$

1 Introduction

Suppose we have a system of S semiaxes with a common origin and a particle moving randomly on S. Here we are interested: (a) In the time when the particle reaches at a certain point of S and (b) how long does the particle spend in a specific part of S, say in one of the rays that constitute S. Possible applications include spread of toxic particles in a system of channels or vessels or propagation of information in networks (see, e.g., Deng and Li 2009).

The mathematical model is the following: Let S be the set consisting of n semiaxes $S_{1}, \ldots, S_{n}, n \geq 2$, with a common origin 0 and X_{t} the Brownian motion process on S, namely the diffusion process on S whose infinitesimal generator L is

$$
\begin{equation*}
L u=\frac{1}{2} u^{\prime \prime}, \tag{1}
\end{equation*}
$$

[^0]where
$$
u=\left(u_{1}, \ldots, u_{n}\right),
$$
together with the continuity conditions (a total of $n-1$ equations),
\[

$$
\begin{equation*}
u_{1}(0)=\cdots=u_{n}(0) \tag{2}
\end{equation*}
$$

\]

and the so-called "Kirchhoff condition"

$$
\begin{equation*}
u_{1}^{\prime}(0)+\cdots+u_{n}^{\prime}(0)=0 . \tag{3}
\end{equation*}
$$

This is a Walsh's-type Brownian motion (see Barlow et al. 1989).
It is well-known that L defines a (unique) self-adjoint operator on the space

$$
L_{2}(S)=\bigoplus_{j=1}^{n} L_{2}\left(S_{j}\right) \simeq \bigoplus_{j=1}^{n} L_{2}(0, \infty)
$$

The process X_{t} does a standard Brownian motion on each of the semiaxes and, when it hits 0 , it continues its motion on the j-th semiaxis, $1 \leq j \leq n$, with probability $1 / n$, (this is the probabilistic meaning of Eq. 3, see, e.g., Freidlin and Wentzell 1993). For notational clarity it is helpful to use the coordinate $x_{j}, 0 \leq x_{j}<\infty$, for the semiaxis $S_{j}, 1 \leq j \leq n$. Notice that, if $u=\left(u_{1}, \ldots, u_{n}\right)$ is a function on S, then its j-th component, u_{j}, is a function on S_{j}, hence $u_{j}=u_{j}\left(x_{j}\right)$.

We have computed the transition density of X_{t} (see Fig. 1):

$$
p\left(t, x_{k}, y_{j}\right)=\frac{2}{n \sqrt{2 \pi t}} e^{-\frac{\left(x_{k}+y_{j}\right)^{2}}{2 t}},
$$

if $k \neq j$, and

$$
p\left(t, x_{k}, y_{k}\right)=\frac{1}{\sqrt{2 \pi t}}\left[e^{-\frac{\left(x_{k}-y_{k}\right)^{2}}{2 t}}-\frac{n-2}{n} e^{-\frac{\left(x_{k}+y_{k}\right)^{2}}{2 t}}\right] .
$$

We want to study certain issues regarding exit (or hitting) times and occupational times of X_{t}. Our results extend certain classical results for the standard Brownian

Fig. 1 The graph S

motion on \mathbb{R} (e.g. the continuous gambler's ruin problem-see, e.g., Chung and Zambrini 2001) which actually corresponds to the case $n=2\left(x_{1}=x, x_{2}=-x\right.$, where $x \geq 0$). Finally, we want to mention that Brownian motion-diffusion models are often used in environmental research (see for example Hristopulos 2003; James et al. 2005; Mtundu and Koch 1987).

2 Exit Times and Exit Probabilities (Explicit Calculations)

On each semiaxis $S_{j}, 1 \leq j \leq n$, consider the point $b_{j}>0$. These points define the (bounded) subset of S

$$
S^{b}=\bigcup_{j=1}^{n}\left\{x_{j}: 0 \leq x_{j}<b_{j}\right\}
$$

(thus S^{b} consists of n line segments of lengths b_{1}, \ldots, b_{n}, with a common initial point, namely 0). We assume that $X_{0} \in S^{b}$ and we denote by T the exit time from S^{b}, i.e. the smallest time such that $X_{t}=b_{j}$, for some $j=1, \ldots, n$. We also introduce the events

$$
\begin{equation*}
B_{j}=\left\{X_{T}=b_{j}\right\} . \tag{4}
\end{equation*}
$$

If $X_{0}=x_{j}$, we denote the associated probability measure by $P^{x_{j}}$ and the expectation by $E^{x_{j}}$.

Let us now consider the following boundary value problem for $u=\left(u_{1}, \ldots, u_{n}\right)$

$$
\begin{equation*}
\frac{1}{2} u_{j}^{\prime \prime}-\lambda u_{j}=0, \quad j=1, \ldots, n, \tag{5}
\end{equation*}
$$

where λ is a complex parameter and u satisfies Eqs. 2 and 3 namely

$$
\begin{gather*}
u_{1}(0)=\cdots=u_{n}(0), \tag{6}\\
u_{1}^{\prime}(0)+\cdots+u_{n}^{\prime}(0)=0, \tag{7}
\end{gather*}
$$

together with the boundary conditions

$$
\begin{equation*}
u_{1}\left(b_{1}\right)=1, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j}\left(b_{j}\right)=0, \quad j \neq 1 \tag{9}
\end{equation*}
$$

The solution u of the above problem has the Feynman-Kac representation (see, e.g., Freidlin 1885 or Karatzas and Shreve 1991)

$$
\begin{equation*}
u_{j}\left(x_{j}\right)=u_{j}\left(x_{j} ; \lambda\right)=E^{x_{j}}\left[e^{-\lambda T} \mathbf{1}_{B_{1}}\right] \tag{10}
\end{equation*}
$$

as long as

$$
\mathfrak{R}\{-\lambda\}<\lambda_{1},
$$

where λ_{1} is the smallest eigenvalue of L acting on S^{b} with Dirichlet (i.e. 0) boundary conditions at $x_{j}=b_{i}, j=1, \ldots, n$. In particular Eq. 10 is valid for all $\lambda \geq 0$. It is straightforward to check that λ_{1} is the smallest positive zero of

$$
F(\lambda)=\cot \left(\sqrt{2 \lambda} b_{1}\right)+\cdots+\cot \left(\sqrt{2 \lambda} b_{n}\right) .
$$

Set $b_{M}=\max \left\{b_{1}, \ldots, b_{n}\right\}$. Since $F(0+)=+\infty$ and $F\left(\left(\pi^{2} / 2 b_{M}^{2}\right)-\right)=-\infty$, it follows that

$$
0<\lambda_{1}<\frac{\pi^{2}}{2 b_{M}^{2}}
$$

Let us calculate the solution u of the problem Eqs. $5-9$. First assume $\lambda \neq 0$. To satisfy Eqs. 5, 8, and 9 we must take

$$
\begin{equation*}
u_{1}\left(x_{1}\right)=A_{1} \sinh \left[\sqrt{2 \lambda}\left(x_{1}-b_{1}\right)\right]+\cosh \left[\sqrt{2 \lambda}\left(x_{1}-b_{1}\right)\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j}\left(x_{j}\right)=A_{j} \sinh \left[\sqrt{2 \lambda}\left(x_{j}-b_{j}\right)\right], \quad 2 \leq j \leq n . \tag{12}
\end{equation*}
$$

To determine the constants A_{1}, \ldots, A_{n} we have to use Eqs. 6 and 7. From Eq. 6 we get

$$
A_{1} \sinh \left(\sqrt{2 \lambda} b_{1}\right)-\cosh \left(\sqrt{2 \lambda} b_{1}\right)=A_{2} \sinh \left(\sqrt{2 \lambda} b_{2}\right)=\cdots=A_{n} \sinh \left(\sqrt{2 \lambda} b_{n}\right)
$$

hence

$$
\begin{equation*}
A_{j}=\frac{A_{1} \sinh \left(\sqrt{2 \lambda} b_{1}\right)-\cosh \left(\sqrt{2 \lambda} b_{1}\right)}{\sinh \left(\sqrt{2 \lambda} b_{j}\right)}, \quad 2 \leq j \leq n . \tag{13}
\end{equation*}
$$

By Eq. 7 we have
$A_{1} \cosh \left(\sqrt{2 \lambda} b_{1}\right)-\sinh \left(\sqrt{2 \lambda} b_{1}\right)+A_{2} \cosh \left(\sqrt{2 \lambda} b_{2}\right)+\cdots+A_{n} \cosh \left(\sqrt{2 \lambda} b_{n}\right)=0$.

Using Eq. 13 in Eq. 14 yields

$$
\begin{aligned}
A_{1} \cosh \left(\sqrt{2 \lambda} b_{1}\right)+ & A_{1} \sinh \left(\sqrt{2 \lambda} b_{1}\right) \operatorname{coth}\left(\sqrt{2 \lambda} b_{2}\right)+\cdots \\
+ & A_{1} \sinh \left(\sqrt{2 \lambda} b_{1}\right) \operatorname{coth}\left(\sqrt{2 \lambda} b_{n}\right) \\
= & \sinh \left(\sqrt{2 \lambda} b_{1}\right)+\cosh \left(\sqrt{2 \lambda} b_{1}\right) \operatorname{coth}\left(\sqrt{2 \lambda} b_{2}\right)+\cdots \\
& +\cosh \left(\sqrt{2 \lambda} b_{1}\right) \operatorname{coth}\left(\sqrt{2 \lambda} b_{n}\right)
\end{aligned}
$$

or

$$
\begin{gathered}
A_{1} \sinh \left(\sqrt{2 \lambda} b_{1}\right)\left[\operatorname{coth}\left(\sqrt{2 \lambda} b_{1}\right)+\operatorname{coth}\left(\sqrt{2 \lambda} b_{2}\right)+\cdots+\operatorname{coth}\left(\sqrt{2 \lambda} b_{n}\right)\right] \\
=\sinh \left(\sqrt{2 \lambda} b_{1}\right)\left[1+\operatorname{coth}\left(\sqrt{2 \lambda} b_{1}\right) \operatorname{coth}\left(\sqrt{2 \lambda} b_{2}\right)+\cdots\right. \\
\left.+\operatorname{coth}\left(\sqrt{2 \lambda} b_{1}\right) \operatorname{coth}\left(\sqrt{2 \lambda} b_{n}\right)\right] .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
A_{1}=\frac{1+\operatorname{coth}\left(\sqrt{2 \lambda} b_{1}\right) \sum_{k=2}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)}{\sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)} \tag{15}
\end{equation*}
$$

and hence Eq. 13 becomes

$$
\begin{equation*}
A_{j}=-\frac{1}{\sinh \left(\sqrt{2 \lambda} b_{j}\right) \sinh \left(\sqrt{2 \lambda} b_{1}\right) \sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)}, \tag{16}
\end{equation*}
$$

for $2 \leq j \leq n$.
Let us also analyze the somehow exceptional case $\lambda=0$. In this case the Eq. 5 becomes

$$
\begin{equation*}
u_{j}^{\prime \prime}=0, \quad j=1, \ldots, n \tag{17}
\end{equation*}
$$

and the boundary conditions are again Eqs. 6, 7, 8, and 9. By formula 10 we can see immediately that the solution u has the probabilistic interpretation

$$
\begin{equation*}
u_{j}\left(x_{j}\right)=u_{j}\left(x_{j} ; 0\right)=E^{x_{j}}\left[\mathbf{1}_{B_{1}}\right]=P^{x_{j}}\left[B_{1}\right]=P^{x_{j}}\left\{X_{T}=b_{1}\right\} . \tag{18}
\end{equation*}
$$

To satisfy Eqs. 17, 8, and 9 we must take

$$
u_{1}\left(x_{1}\right)=A_{1}\left(x_{1}-b_{1}\right)+1
$$

and

$$
u_{j}\left(x_{j}\right)=A_{j}\left(x_{j}-b_{j}\right), \quad 2 \leq j \leq n .
$$

To determine the constants A_{1}, \ldots, A_{n} we have to use Eqs. 6 and 7. From Eq. 6 we get

$$
A_{1} b_{1}-1=A_{2} b_{2}=\cdots=A_{n} b_{n}
$$

hence

$$
\begin{equation*}
A_{j}=\frac{A_{1} b_{1}-1}{b_{j}}, \quad 2 \leq j \leq n . \tag{19}
\end{equation*}
$$

On the other hand, from Eq. 7 we get

$$
\begin{equation*}
A_{1}+A_{2}+\cdots+A_{n}=0 \tag{20}
\end{equation*}
$$

Using Eq. 19 in Eq. 20 yields

$$
A_{1}+\frac{A_{1} b_{1}}{b_{2}}+\cdots+\frac{A_{1} b_{1}}{b_{n}}=\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}}
$$

or

$$
A_{1} b_{1}\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}}\right)=\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}} .
$$

Therefore

$$
\begin{equation*}
A_{1}=\frac{\sum_{k=2}^{n}\left(1 / b_{k}\right)}{b_{1} \sum_{k=1}^{n}\left(1 / b_{k}\right)} \tag{21}
\end{equation*}
$$

and hence Eq. 19 becomes

$$
\begin{equation*}
A_{j}=-\frac{1}{b_{j} b_{1} \sum_{k=1}^{n}\left(1 / b_{k}\right)}, \tag{22}
\end{equation*}
$$

for $2 \leq j \leq n$.
We summarize the above results in the following theorem:
Theorem 1 For $\lambda>0$ (or more generally for $\lambda \neq 0, \mathfrak{R}\{-\lambda\}<\lambda_{1}$, where λ_{1} is the smallest eigenvalue of L acting on S^{b} with Dirichlet boundary conditions at $x_{j}=b_{j}$, $j=1, \ldots, n$) we have

$$
E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{B_{j}}\right]=\frac{1}{\sinh \left(\sqrt{2 \lambda} b_{i}\right) \sinh \left(\sqrt{2 \lambda} b_{j}\right) \sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)} \sinh \left[\sqrt{2 \lambda}\left(b_{i}-x_{i}\right)\right],
$$

if $i \neq j$. Also
$E^{x_{j}}\left[e^{-\lambda T} \mathbf{1}_{B_{j}}\right]$

$$
\begin{aligned}
= & \cosh \left[\sqrt{2 \lambda}\left(b_{j}-x_{j}\right)\right]+\left[\frac{1}{\sinh \left(\sqrt{2 \lambda} b_{j}\right) \sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)}-\cosh \left(\sqrt{2 \lambda} b_{j}\right)\right] \\
& \times \frac{\sinh \left[\sqrt{2 \lambda}\left(b_{j}-x_{j}\right)\right]}{\sinh \left(\sqrt{2 \lambda} b_{j}\right)} .
\end{aligned}
$$

If $\lambda=0$, the above formulas become

$$
E^{x_{i}}\left[\mathbf{1}_{B_{j}}\right]=P^{x_{i}}\left[B_{j}\right]=P^{x_{i}}\left\{X_{T}=b_{j}\right\}=\frac{1}{b_{j} \sum_{k=1}^{n}\left(1 / b_{k}\right)}\left(1-\frac{x_{i}}{b_{i}}\right),
$$

if $i \neq j$. Finally

$$
E^{x_{j}}\left[\mathbf{1}_{B_{j}}\right]=P^{x_{j}}\left[B_{j}\right]=P^{x_{j}}\left\{X_{T}=b_{j}\right\}=\frac{x_{j}}{b_{j}}+\frac{1}{b_{j} \sum_{k=1}^{n}\left(1 / b_{k}\right)}\left(1-\frac{x_{j}}{b_{j}}\right) .
$$

Remark If we set $x_{i}=0\left(\right.$ or $\left.x_{j}=0\right)$ in the above formulas, we obtain

$$
\begin{equation*}
E^{0}\left[e^{-\lambda T} \mathbf{1}_{B_{j}}\right]=\frac{1}{\sinh \left(\sqrt{2 \lambda} b_{j}\right) \sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)} \tag{23}
\end{equation*}
$$

In particular $(\lambda=0)$

$$
\begin{equation*}
E^{0}\left[\mathbf{1}_{B_{j}}\right]=P^{0}\left[B_{j}\right]=P^{0}\left\{X_{T}=b_{j}\right\}=\frac{1}{b_{j} \sum_{k=1}^{n}\left(1 / b_{k}\right)} \tag{24}
\end{equation*}
$$

Next we consider the problem

$$
\begin{gather*}
\frac{1}{2} U_{j}^{\prime \prime}-\lambda U_{j}=0, \quad j=1, \ldots, n, \tag{25}\\
U_{1}(0)=\cdots=U_{n}(0), \tag{26}\\
U_{1}^{\prime}(0)+\cdots+U_{n}^{\prime}(0)=0, \tag{27}\\
U_{i}\left(b_{i}\right)=1, \quad i=1, \ldots, n . \tag{28}
\end{gather*}
$$

Here, the meaning of $U\left(x_{j}\right)$ is $E^{x_{j}}\left[e^{-\lambda T}\right]$, the moment generating function of T, when the exit axis is not specified. It follows (e.g., see again Freidlin 1885 or Karatzas and Shreve 1991) that

$$
U\left(x_{i}\right)=U\left(x_{i} ; \lambda\right)=E^{x_{i}}\left[e^{-\lambda T}\right]
$$

and

$$
U(0 ; \lambda)=E^{0}\left[e^{-\lambda T}\right]
$$

Notice that

$$
\begin{equation*}
U\left(x_{i}\right)=E^{x_{i}}\left[e^{-\lambda T}\right]=\sum_{j=1}^{n} E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{B_{j}}\right], \tag{29}
\end{equation*}
$$

where each $E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{B_{j}}\right]$ (including $i=j$) is given by Theorem 1. Setting $x_{i}=0$ and using Eq. 23 we obtain the following corollary:

Corollary 1

$$
\begin{equation*}
E^{0}\left[e^{-\lambda T}\right]=\frac{1}{\sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)} \sum_{j=1}^{n} \frac{1}{\sinh \left(\sqrt{2 \lambda} b_{j}\right)} . \tag{30}
\end{equation*}
$$

Having Eq. 30 we can use a probabilistic approach to compute $E^{x_{i}}\left[e^{-\lambda T}\right]$ (instead of trying to solve the problem Eqs. 25-28):

Assume $X_{0}=x_{i}$. Let T_{i} be the (first) exit time from the line segment $0<x_{i}<b_{i}$, so that $X\left(T_{i}\right)=0$, or $X\left(T_{i}\right)=b_{i}$, in which case $T_{i}=T$. Then we have

$$
E^{x_{i}}\left[e^{-\lambda T}\right]=E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=b_{i}\right\}}\right]+E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right],
$$

or equivalently

$$
\begin{equation*}
E^{x_{i}}\left[e^{-\lambda T}\right]=E^{x_{i}}\left[e^{-\lambda T_{i}} \mathbf{1}_{\left\{X\left(T_{i}\right)=b_{i}\right\}}\right]+E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right] . \tag{31}
\end{equation*}
$$

The first term of the right-hand side of Eq. 31 can be computed by applying Theorem 1 with $n=2, b_{1}=b_{i}$, and $b_{2}=0$ (see also Chung and Zambrini 2001 or Karatzas and Shreve 1991). The result is

$$
E^{x_{i}}\left[e^{-\lambda T_{i}} \mathbf{1}_{\left\{X\left(T_{i}\right)=b_{i}\right]}\right]=\frac{\sinh \left(\sqrt{2 \lambda} x_{i}\right)}{\sinh \left(\sqrt{2 \lambda} b_{i}\right)} .
$$

Next we show how to compute the second of the right-hand side of Eq. 31 with the help of the strong Markov property of X_{t} and Corollary 1. Let T_{0} be the (first) time at which X_{t} hits 0 . Then $\left\{X\left(T_{i}\right)=0\right\}=\left\{T_{0}<T\right\}$ and

$$
E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right]=E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{T_{0}<T\right\}}\right]=E^{x_{i}}\left\{E\left[e^{-\lambda T} \mathbf{1}_{\left\{T_{0}<T\right\}} \mid \mathscr{F}_{T_{0}}\right]\right\},
$$

hence

$$
E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right]=E^{x_{i}}\left\{e^{-\lambda T_{0}} \mathbf{1}_{\left\{T_{0}<T\right\}} E^{0}\left[e^{-\lambda T}\right]\right\}=E^{0}\left[e^{-\lambda T}\right] E^{x_{i}}\left[e^{-\lambda T_{0}} \mathbf{1}_{\left\{T_{0}<T\right\}}\right],
$$

i.e.

$$
E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right]=E^{0}\left[e^{-\lambda T}\right] E^{x_{i}}\left\{e^{-\lambda T_{i}} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right\} .
$$

Thus, by using Corollary 1 (and Theorem 1) we obtain

$$
E^{x_{i}}\left[e^{-\lambda T} \mathbf{1}_{\left\{X\left(T_{i}\right)=0\right\}}\right]=\frac{1}{\sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)}\left[\sum_{j=1}^{n} \frac{1}{\sinh \left(\sqrt{2 \lambda} b_{j}\right)}\right] \frac{\sinh \left[\sqrt{2 \lambda}\left(b_{i}-x_{i}\right)\right]}{\sinh \left(\sqrt{2 \lambda} b_{i}\right)} .
$$

We summarize our result in the following theorem:

Theorem 2

$$
\begin{align*}
E^{x_{i}}\left[e^{-\lambda T}\right]= & \frac{\sinh \left(\sqrt{2 \lambda} x_{i}\right)}{\sinh \left(\sqrt{2 \lambda} b_{i}\right)} \\
& +\frac{1}{\sum_{k=1}^{n} \operatorname{coth}\left(\sqrt{2 \lambda} b_{k}\right)}\left[\sum_{j=1}^{n} \frac{1}{\sinh \left(\sqrt{2 \lambda} b_{j}\right)}\right] \frac{\sinh \left[\sqrt{2 \lambda}\left(b_{i}-x_{i}\right)\right]}{\sinh \left(\sqrt{2 \lambda} b_{i}\right)} . \tag{32}
\end{align*}
$$

Remark An interesting special case of the above theorem is when

$$
b_{1}=\cdots=b_{n}=b .
$$

Then, formula 32 becomes

$$
E^{x_{i}}\left[e^{-\lambda T}\right]=\frac{\sinh \left(\sqrt{2 \lambda} x_{i}\right)}{\sinh (\sqrt{2 \lambda} b)}+\frac{\sinh \left[\sqrt{2 \lambda}\left(b-x_{i}\right)\right]}{\cosh (\sqrt{2 \lambda} b) \sinh (\sqrt{2 \lambda} b)} .
$$

Notice that there is no dependence on n. In particular

$$
E^{0}\left[e^{-\lambda T}\right]=\frac{1}{\cosh (\sqrt{2 \lambda} b)}
$$

We finish the section with some more explicit formulas relating the exit time T and the events B_{j}. The solutions $u_{j}\left(x_{j} ; \lambda\right), j=1, \ldots, n$, of Eqs. 5-9 are entire functions of λ (of order $1 / 2$). If we expand them about $\lambda=0$ as

$$
u_{j}\left(x_{j} ; \lambda\right)=u_{j}\left(x_{j} ; 0\right)+\lambda v_{j}\left(x_{j}\right)+O\left(\lambda^{2}\right),
$$

then $v=\left(v_{1}, \ldots, v_{n}\right)$ satisfies the system

$$
\begin{gather*}
\frac{1}{2} v_{j}^{\prime \prime}=-u_{j}\left(x_{j} ; 0\right), \quad j=1, \ldots, n, \tag{33}\\
v_{1}(0)=\cdots=v_{n}(0), \tag{34}\\
v_{1}^{\prime}(0)+\cdots+v_{n}^{\prime}(0)=0, \tag{35}\\
v_{j}\left(b_{j}\right)=0, \quad j=1, \ldots, n . \tag{36}
\end{gather*}
$$

By Theorem 1

$$
\begin{equation*}
u_{j}\left(x_{j} ; 0\right)=\frac{1}{b_{j} \sum_{k=1}^{n}\left(1 / b_{k}\right)}\left(1-\frac{x_{j}}{b_{j}}\right), \tag{37}
\end{equation*}
$$

if $j \neq 1$ and

$$
\begin{equation*}
u_{1}\left(x_{1} ; 0\right)=\frac{x_{1}}{b_{1}}+\frac{1}{b_{1} \sum_{k=1}^{n}\left(1 / b_{k}\right)}\left(1-\frac{x_{1}}{b_{1}}\right) . \tag{38}
\end{equation*}
$$

The solution v of the above problem has the probabilistic representation

$$
\begin{equation*}
v_{j}\left(x_{j}\right)=E^{x_{j}}\left[T \mathbf{1}_{B_{j}}\right] \tag{39}
\end{equation*}
$$

since $u_{j}\left(x_{j} ; \lambda\right)=E^{x_{j}}\left[e^{-\lambda T} \mathbf{1}_{B_{j}}\right]$ (this is Eq. 10) and

$$
v_{j}\left(x_{j}\right)=\left.\frac{\partial}{\partial \lambda} u_{j}\left(x_{j} ; \lambda\right)\right|_{\lambda=0} .
$$

Let us rewrite Eq. 33 in the form

$$
\begin{equation*}
\frac{1}{2} v_{j}^{\prime \prime}=\gamma_{j}\left(x_{j}-b_{j}\right)+\delta_{j}, \quad j=1, \ldots, n, \tag{40}
\end{equation*}
$$

where, in view of Eqs. 37 and 38

$$
\begin{equation*}
\gamma_{j}=\frac{1}{b_{j}^{2} \sum_{k=1}^{n}\left(1 / b_{k}\right)}, \quad \delta_{j}=0, \tag{41}
\end{equation*}
$$

for $j \neq 1$, while

$$
\begin{equation*}
\gamma_{1}=\frac{1}{b_{1}^{2} \sum_{k=1}^{n}\left(1 / b_{k}\right)}-\frac{1}{b_{1}}, \quad \delta_{1}=-1 \tag{42}
\end{equation*}
$$

Then a straightforward calculation gives that

$$
\begin{equation*}
v_{j}\left(x_{j}\right)=\frac{\gamma_{j}\left(x_{j}-b_{j}\right)^{3}}{3}+\delta_{j}\left(x_{j}-b_{j}\right)^{2}+\varepsilon_{j}\left(x_{j}-b_{j}\right), \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{j}=\delta_{j} b_{j}-\frac{\gamma_{j} b_{j}^{2}}{3}+\frac{\sum_{k=1}^{n}\left(\delta_{k} b_{k}-(2 / 3) \gamma_{k} b_{k}^{2}\right)}{b_{j} \sum_{k=1}^{n}\left(1 / b_{k}\right)} . \tag{44}
\end{equation*}
$$

Finally if $V=\left(V_{1}, \ldots, V_{n}\right)$ satisfies the system

$$
\begin{gather*}
\frac{1}{2} V_{j}^{\prime \prime}=-1, \quad j=1, \ldots, n, \tag{45}\\
V_{1}(0)=\cdots=V_{n}(0), \tag{46}\\
V_{1}^{\prime}(0)+\cdots+V_{n}^{\prime}(0)=0, \tag{47}\\
V_{j}\left(b_{j}\right)=0, \quad j=1, \ldots, n, \tag{48}
\end{gather*}
$$

Then

$$
V_{j}\left(x_{j}\right)=E^{x_{j}}[T] .
$$

By taking

$$
\gamma_{j}=0, \quad \delta_{j}=-1
$$

in Eqs. 43 and 44 we obtain the following corollary:

Corollary 2

$$
E^{x_{j}}[T]=\left[b_{j}+\frac{\sum_{k=1}^{n} b_{k}}{b_{j} \sum_{k=1}^{n}\left(1 / b_{k}\right)}\right]\left(b_{j}-x_{j}\right)-\left(b_{j}-x_{j}\right)^{2},
$$

or equivalently

$$
E^{x_{j}}[T]=x_{j}\left(b_{j}-x_{j}\right)+\frac{\sum_{k=1}^{n} b_{k}}{\sum_{k=1}^{n}\left(1 / b_{k}\right)}\left(1-\frac{x_{j}}{b_{j}}\right) .
$$

In particular

$$
E^{0}[T]=\frac{\sum_{k=1}^{n} b_{k}}{\sum_{k=1}^{n}\left(1 / b_{k}\right)} .
$$

3 A Generalization of the Arc-Sine Law

Let m be the Lebesgue measure of \mathbb{R}^{1}. We introduce the occupation times of S_{j} :

$$
\begin{equation*}
\Gamma_{j}(t)=m\left\{s \in[0, t]: X_{s} \in S_{j}\right\}=\int_{0}^{t} \mathbf{1}_{S_{j}}\left(X_{s}\right) d s \tag{49}
\end{equation*}
$$

Of course,

$$
\begin{equation*}
0 \leq \Gamma_{j}(t) \leq t \quad \text { and } \quad \sum_{j=1}^{n} \Gamma_{j}(t)=t . \tag{50}
\end{equation*}
$$

For $n=2$ the famous arcsine law of P. Lévy states that (see, e.g. Karatzas and Shreve 1991)

$$
\begin{equation*}
P^{0}\left\{\Gamma_{1}(t) \leq \alpha t\right\}=\frac{1}{\pi} \int_{0}^{\alpha} \frac{d r}{\sqrt{r(1-r)}}=\frac{2}{\pi} \arcsin (\alpha) . \tag{51}
\end{equation*}
$$

We want to extend the above formula for $n>2$. Consider the problem

$$
\begin{gather*}
\frac{1}{2} w_{j}^{\prime \prime}\left(x_{j}\right)-\alpha w_{j}\left(x_{j}\right)-\beta_{j} w_{j}\left(x_{j}\right)=-1, \quad j=1, \ldots, n-1, \tag{52}\\
\frac{1}{2} w_{n}^{\prime \prime}\left(x_{n}\right)-\alpha w_{n}\left(x_{n}\right)=-1, \tag{53}\\
w_{1}(0)=\cdots=w_{n}(0), \tag{54}\\
w_{1}^{\prime}(0)+\cdots+w_{n}^{\prime}(0)=0, \tag{55}\\
w_{j}\left(x_{j}\right) \text { bounded on } S_{j}, \quad j=1, \ldots, n . \tag{56}
\end{gather*}
$$

Here $\alpha, \beta_{1}, \ldots, \beta_{n-1}$ are parameters. The solution $w=\left(w_{1}, \ldots, w_{n}\right)$ of this problem has the Feynman-Kac representation (see, e.g., Freidlin 1885 or Karatzas and Shreve 1991)

$$
\begin{equation*}
w_{j}\left(x_{j}\right)=E^{x_{j}}\left[\int_{0}^{\infty} e^{-\alpha t} \exp \left(-\int_{0}^{t} \sum_{k=1}^{n-1} \beta_{k} \mathbf{1}_{S_{k}}\left(X_{s}\right) d s\right) d t\right] \tag{57}
\end{equation*}
$$

(notice that, for a given value of X_{s}, at most one of the quantities $\mathbf{1}_{S_{j}}\left(X_{s}\right)$ does not vanish). In particular (see Eq. 49)

$$
\begin{equation*}
w_{j}(0)=\int_{0}^{\infty} e^{-\alpha t} E^{0}\left[\exp \left(-\sum_{k=1}^{n-1} \beta_{k} \Gamma_{k}(t)\right)\right] d t \tag{58}
\end{equation*}
$$

independently of j due to Eq. 54 .
Now the solution of Eqs. 52-56 is

$$
w_{j}\left(x_{j}\right)=A_{j} e^{-x_{j} \sqrt{2\left(\alpha+\beta_{j}\right)}}+\frac{1}{\alpha+\beta_{j}}, \quad j=1, \ldots, n-1,
$$

and

$$
w_{n}\left(x_{n}\right)=A_{n} e^{-x_{n} \sqrt{2 \alpha}}+\frac{1}{\alpha},
$$

where, in view of Eqs. 54 and 55, the constants A_{1}, \ldots, A_{n} must satisfy

$$
A_{1}+\frac{1}{\alpha+\beta_{1}}=\cdots=A_{n-1}+\frac{1}{\alpha+\beta_{n-1}}=A_{n}+\frac{1}{\alpha}=w_{j}(0)
$$

and

$$
A_{1} \sqrt{\alpha+\beta_{1}}+\cdots+A_{n-1} \sqrt{\alpha+\beta_{n-1}}+A_{n} \sqrt{\alpha}=0
$$

It follows that

$$
w_{j}(0)=\left(\frac{1}{\sqrt{\alpha+\beta_{1}}}+\cdots+\frac{1}{\sqrt{\alpha+\beta_{n-1}}}+\frac{1}{\sqrt{\alpha}}\right) \frac{1}{\sqrt{\alpha+\beta_{1}}+\cdots+\sqrt{\alpha+\beta_{n-1}}+\sqrt{\alpha}} .
$$

We summarize the above observations in the following proposition:

Proposition 1 Let

$$
h\left(t ; \beta_{1}, \ldots, \beta_{n-1}\right)=E^{0}\left[\exp \left(-\sum_{k=1}^{n-1} \beta_{k} \Gamma_{k}(t)\right)\right], \quad t \geq 0
$$

where $\Gamma_{k}(t), k=1, \ldots, n-1$, are the occupation times of Eq. 49. If

$$
H\left(\alpha ; \beta_{1}, \ldots, \beta_{n-1}\right)=\int_{0}^{\infty} e^{-\alpha t} h\left(t ; \beta_{1}, \ldots, \beta_{n-1}\right) d t
$$

is the Laplace transform of h, then

$$
\begin{aligned}
& H\left(\alpha ; \beta_{1}, \ldots, \beta_{n-1}\right) \\
& \quad=\left(\frac{1}{\sqrt{\alpha+\beta_{1}}}+\cdots+\frac{1}{\sqrt{\alpha+\beta_{n-1}}}+\frac{1}{\sqrt{\alpha}}\right) \frac{1}{\sqrt{\alpha+\beta_{1}}+\cdots+\sqrt{\alpha+\beta_{n-1}}+\sqrt{\alpha}} .
\end{aligned}
$$

Remark If we set $\beta_{1}=\beta$ and $\beta_{2}=\cdots=\beta_{n-1}=0$, then the above function h becomes

$$
h_{1}(t ; \beta):=h(t ; \beta, 0, \ldots, 0)=E^{0}\left[\exp \left(-\beta \Gamma_{1}(t)\right)\right], \quad t \geq 0
$$

Let

$$
H_{1}(\alpha ; \beta)=\int_{0}^{\infty} e^{-\alpha t} h_{1}(t ; \beta) d t .
$$

Then

$$
H_{1}(\alpha ; \beta)=\left(\frac{1}{\sqrt{\alpha+\beta}}+\frac{n-1}{\sqrt{\alpha}}\right) \frac{1}{\sqrt{\alpha+\beta}+(n-1) \sqrt{\alpha}} .
$$

For $n=2$ we obtain the standard quantity that appears in the arcsine law.
If $f(x ; t)$ is the probability density function of $\Gamma_{1}(t)$, then, of course,

$$
h_{1}(t ; \beta)=E^{0}\left[\exp \left(-\beta \Gamma_{1}(t)\right)\right]=\int_{0}^{\infty} e^{-\beta x} f(x ; t) d x .
$$

Hence

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\alpha t} e^{-\beta x} f(x ; t) d x d t=\left(\frac{1}{\sqrt{\alpha+\beta}}+\frac{n-1}{\sqrt{\alpha}}\right) \frac{1}{\sqrt{\alpha+\beta}+(n-1) \sqrt{\alpha}}
$$

4 Conclusion and Discussion

In this paper we have discussed a stochastic process X_{t} that lives on a system of S semiaxes with a common origin. X_{t} does a standard Brownian Motion on each of the semiaxes and when it hits 0 , it continues its motion on the j-th semiaxis $1 \leq j \leq$ n, with probability $1 / n$. We have computed explicitly some exit probabilities and the associated exit times. Our results extend certain classical results for the standard Brownian Motion on \mathbb{R} (e.g. the continuous gambler's ruin problem). Furthermore, we have made an attempt to extend the arcsine law of P. Lévy to the occupation
times $\Gamma_{j}(t)$ of our process X_{t} on each branch of S. We have computed explicitly the (double) Laplace transform of the density of $\Gamma_{j}(t)$. However the exact form of this density remains an open problem.

Acknowledgement The work was partially supported by a П.Е.В.Е. 2008 Grant of the National Technical University of Athens.

References

Barlow MT, Pitman JW, Yor M (1989) On Walsh's Brownian motions. Sem. prob. XXIII. In: Lecture notes in mathematics, vol 1372. Springer, Berlin, pp 275-293
Chung KL, Zambrini JC (2001) Introduction to random time and quantum randomness. In: Monographs of the Portuguese mathematical society. McGraw-Hill, Lisboa
Deng D, Li Q (2009) Communication in naturally mobile sensor networks. Wireless algorithms, systems, and applications. Lect Notes Comput Sci 5682:295-304
Freidlin MI (1885) Functional integration and partial differential equations. Princeton University Press, Princeton
Freidlin MI, Wentzell AD (1993) Diffusion processes on graphs and the averaging principle. Ann Probab 21(4):2215-2245
Hristopulos DT (2003) Permissibility of fractal exponents and models of band-limited two-point functions for fGn and fBm random fields. Stoch Environ Res Risk Assess 17:191-216
James CS, Bilezikjian KT, Chysikopoulos VC (2005) Contaminant transport in a fracture with spatially variable aperture in the presence of monodisperse and polydisperse colloids. Stoch Environ Res Risk Assess 19:266-279
Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus, 2nd edn. Graduate texts in mathematics, vol 113. Springer, New York
Mtundu ND, Koch RW (1987) A stochastic differential equation approach to soil moisture. Stoch Hydrol Hydraul 1:101-116

[^0]: V. G. Papanicolaou (\boxtimes) • E. G. Papageorgiou • D. C. Lepipas

 Department of Mathematics, National Technical University of Athens, 15780, Athens, Greece e-mail: papanico@math.ntua.gr

