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Abstract Consider a stochastic process that lives on n-semiaxes joined at the origin.
On each ray it behaves as one dimensional Brownian Motion and at the origin it
chooses a ray uniformly at random (Kirchhoff condition). The principal results are
the computation of the exit probabilities and certain other probabilistic quantities
regarding exit and occupation times.
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1 Introduction

Suppose we have a system of S semiaxes with a common origin and a particle moving
randomly on S. Here we are interested: (a) In the time when the particle reaches at
a certain point of S and (b) how long does the particle spend in a specific part of S,
say in one of the rays that constitute S. Possible applications include spread of toxic
particles in a system of channels or vessels or propagation of information in networks
(see, e.g., Deng and Li 2009).

The mathematical model is the following: Let S be the set consisting of n semiaxes
S1, ..., Sn, n ≥ 2, with a common origin 0 and Xt the Brownian motion process on S,
namely the diffusion process on S whose infinitesimal generator L is

Lu = 1
2

u′′, (1)
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where

u = (u1, ..., un),

together with the continuity conditions (a total of n − 1 equations),

u1(0) = · · · = un(0) (2)

and the so-called “Kirchhoff condition”

u′
1(0) + · · · + u′

n(0) = 0. (3)

This is a Walsh’s-type Brownian motion (see Barlow et al. 1989).
It is well-known that L defines a (unique) self-adjoint operator on the space

L2(S) =
n⊕

j=1

L2(Sj) �
n⊕

j=1

L2(0,∞).

The process Xt does a standard Brownian motion on each of the semiaxes and, when
it hits 0, it continues its motion on the j-th semiaxis, 1 ≤ j ≤ n, with probability
1/n, (this is the probabilistic meaning of Eq. 3, see, e.g., Freidlin and Wentzell
1993). For notational clarity it is helpful to use the coordinate xj, 0 ≤ xj < ∞, for
the semiaxis Sj, 1 ≤ j ≤ n. Notice that, if u = (u1, ..., un) is a function on S, then its
j-th component, uj , is a function on Sj, hence uj = uj(xj).

We have computed the transition density of Xt (see Fig. 1):

p(t, xk, yj) = 2

n
√

2π t
e− (xk+yj)

2

2t ,

if k �= j, and

p(t, xk, yk) = 1√
2π t

[
e− (xk−yk)2

2t − n − 2
n

e− (xk+yk)2

2t

]
.

We want to study certain issues regarding exit (or hitting) times and occupational
times of Xt. Our results extend certain classical results for the standard Brownian

Fig. 1 The graph S
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motion on R (e.g. the continuous gambler’s ruin problem—see, e.g., Chung and
Zambrini 2001) which actually corresponds to the case n = 2 (x1 = x, x2 = −x, where
x ≥ 0). Finally, we want to mention that Brownian motion-diffusion models are often
used in environmental research (see for example Hristopulos 2003; James et al. 2005;
Mtundu and Koch 1987).

2 Exit Times and Exit Probabilities (Explicit Calculations)

On each semiaxis Sj, 1 ≤ j ≤ n, consider the point b j > 0. These points define the
(bounded) subset of S

Sb =
n⋃

j=1

{xj : 0 ≤ xj < b j}

(thus Sb consists of n line segments of lengths b 1, ..., b n, with a common initial point,
namely 0). We assume that X0 ∈ Sb and we denote by T the exit time from Sb , i.e. the
smallest time such that Xt = b j, for some j = 1, ..., n. We also introduce the events

Bj = {
XT = b j

}
. (4)

If X0 = xj, we denote the associated probability measure by Pxj and the expectation
by Exj .

Let us now consider the following boundary value problem for u = (u1, ..., un)

1
2

u′′
j − λuj = 0, j = 1, ..., n, (5)

where λ is a complex parameter and u satisfies Eqs. 2 and 3 namely

u1(0) = · · · = un(0), (6)

u′
1(0) + · · · + u′

n(0) = 0, (7)

together with the boundary conditions

u1 (b 1) = 1, (8)

and

uj
(
b j

) = 0, j �= 1. (9)

The solution u of the above problem has the Feynman–Kac representation (see,
e.g., Freidlin 1885 or Karatzas and Shreve 1991)

uj
(
xj

) = uj
(
xj; λ

) = Exj
[
e−λT1B1

]
(10)

as long as


{−λ} < λ1,
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where λ1 is the smallest eigenvalue of L acting on Sb with Dirichlet (i.e. 0) boundary
conditions at xj = b j, j = 1, ..., n. In particular Eq. 10 is valid for all λ ≥ 0. It is
straightforward to check that λ1 is the smallest positive zero of

F(λ) = cot
(√

2λb 1

)
+ · · · + cot

(√
2λb n

)
.

Set b M = max {b 1, ..., b n}. Since F(0+) = +∞ and F((π2/2b 2
M)−) = −∞, it follows

that

0 < λ1 <
π2

2b 2
M

.

Let us calculate the solution u of the problem Eqs. 5–9. First assume λ �= 0. To satisfy
Eqs. 5, 8, and 9 we must take

u1 (x1) = A1 sinh
[√

2λ(x1 − b 1)
]

+ cosh
[√

2λ(x1 − b 1)
]

(11)

and

uj
(
xj

) = Aj sinh
[√

2λ(xj − b j)
]
, 2 ≤ j ≤ n. (12)

To determine the constants A1, ..., An we have to use Eqs. 6 and 7. From Eq. 6 we
get

A1 sinh
(√

2λb 1

)
− cosh

(√
2λb 1

)
= A2 sinh

(√
2λb 2

)
= · · · = An sinh

(√
2λb n

)
,

hence

Aj =
A1 sinh

(√
2λb 1

)
− cosh

(√
2λb 1

)

sinh
(√

2λb j

) , 2 ≤ j ≤ n. (13)

By Eq. 7 we have

A1 cosh
(√

2λb 1

)
−sinh

(√
2λb 1

)
+ A2 cosh

(√
2λb 2

)
+· · ·+ An cosh

(√
2λb n

)
= 0.

(14)

Using Eq. 13 in Eq. 14 yields

A1 cosh
(√

2λb 1

)
+ A1 sinh

(√
2λb 1

)
coth

(√
2λb 2

)
+ · · ·

+ A1 sinh
(√

2λb 1

)
coth

(√
2λb n

)

= sinh
(√

2λb 1

)
+ cosh

(√
2λb 1

)
coth

(√
2λb 2

)
+ · · ·

+ cosh
(√

2λb 1

)
coth

(√
2λb n

)



Methodol Comput Appl Probab (2012) 14:285–297 289

or

A1 sinh
(√

2λb 1

) [
coth

(√
2λb 1

)
+ coth

(√
2λb 2

)
+ · · · + coth

(√
2λb n

)]

= sinh
(√

2λb 1

) [
1 + coth

(√
2λb 1

)
coth

(√
2λb 2

)
+ · · ·

+ coth
(√

2λb 1

)
coth

(√
2λb n

)]
.

Therefore

A1 =
1 + coth

(√
2λb 1

)∑n
k=2 coth

(√
2λb k

)

∑n
k=1 coth

(√
2λb k

) (15)

and hence Eq. 13 becomes

Aj = − 1

sinh
(√

2λb j

)
sinh

(√
2λb 1

)∑n
k=1 coth

(√
2λb k

) , (16)

for 2 ≤ j ≤ n.
Let us also analyze the somehow exceptional case λ = 0. In this case the Eq. 5

becomes

u′′
j = 0, j = 1, ..., n, (17)

and the boundary conditions are again Eqs. 6, 7, 8, and 9. By formula 10 we can see
immediately that the solution u has the probabilistic interpretation

uj
(
xj

) = uj
(
xj; 0

) = Exj
[
1B1

] = Pxj [B1] = Pxj {XT = b 1} . (18)

To satisfy Eqs. 17, 8, and 9 we must take

u1 (x1) = A1(x1 − b 1) + 1

and

uj
(
xj

) = Aj(xj − b j), 2 ≤ j ≤ n.

To determine the constants A1, ..., An we have to use Eqs. 6 and 7. From Eq. 6 we
get

A1b 1 − 1 = A2b 2 = · · · = Anb n,

hence

Aj = A1b 1 − 1
b j

, 2 ≤ j ≤ n. (19)

On the other hand, from Eq. 7 we get

A1 + A2 + · · · + An = 0. (20)

Using Eq. 19 in Eq. 20 yields

A1 + A1b 1

b 2
+ · · · + A1b 1

b n
= 1

b 2
+ · · · + 1

b n
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or

A1b 1

(
1

b 1
+ 1

b 2
+ · · · + 1

b n

)
= 1

b 2
+ · · · + 1

b n
.

Therefore

A1 =
∑n

k=2(1/b k)

b 1
∑n

k=1(1/b k)
(21)

and hence Eq. 19 becomes

Aj = − 1
b jb 1

∑n
k=1(1/b k)

, (22)

for 2 ≤ j ≤ n.
We summarize the above results in the following theorem:

Theorem 1 For λ > 0 (or more generally for λ �= 0 , 
{−λ} < λ1, where λ1 is the
smallest eigenvalue of L acting on Sb with Dirichlet boundary conditions at xj = b j,
j = 1, ..., n) we have

Exi
[
e−λT1Bj

] = 1

sinh
(√

2λbi

)
sinh

(√
2λb j

)∑n
k=1 coth

(√
2λb k

) sinh
[√

2λ(bi − xi)
]
,

if i �= j. Also

Exj
[
e−λT1Bj

]

= cosh
[√

2λ(b j − xj)
]

+
⎡

⎣ 1

sinh
(√

2λb j

)∑n
k=1 coth

(√
2λb k

) − cosh
(√

2λb j

)
⎤

⎦

×
sinh

[√
2λ(b j − xj)

]

sinh
(√

2λb j

) .

If λ = 0, the above formulas become

Exi
[
1Bj

] = Pxi
[
Bj

] = Pxi
{

XT = b j
} = 1

b j
∑n

k=1(1/b k)

(
1 − xi

b i

)
,

if i �= j. Finally

Exj
[
1Bj

] = Pxj
[
Bj

] = Pxj
{

XT = b j
} = xj

b j
+ 1

b j
∑n

k=1(1/b k)

(
1 − xj

b j

)
.

Remark If we set xi = 0 (or xj = 0) in the above formulas, we obtain

E0 [
e−λT1Bj

] = 1

sinh
(√

2λb j

)∑n
k=1 coth

(√
2λb k

) . (23)

In particular (λ = 0)

E0 [
1Bj

] = P0 [
Bj

] = P0 {
XT = b j

} = 1
b j

∑n
k=1(1/b k)

. (24)
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Next we consider the problem

1
2

U ′′
j − λUj = 0, j = 1, ..., n, (25)

U1(0) = · · · = Un(0), (26)

U ′
1(0) + · · · + U ′

n(0) = 0, (27)

Ui (bi) = 1, i = 1, ..., n. (28)

Here, the meaning of U(xj) is Exj
[
e−λT

]
, the moment generating function of T, when

the exit axis is not specified. It follows (e.g., see again Freidlin 1885 or Karatzas and
Shreve 1991) that

U(xi) = U(xi; λ) = Exi
[
e−λT]

and

U(0; λ) = E0 [
e−λT]

.

Notice that

U(xi) = Exi
[
e−λT] =

n∑

j=1

Exi
[
e−λT1Bj

]
, (29)

where each Exi
[
e−λT1Bj

]
(including i = j) is given by Theorem 1. Setting xi = 0 and

using Eq. 23 we obtain the following corollary:

Corollary 1

E0 [
e−λT] = 1

∑n
k=1 coth

(√
2λb k

)
n∑

j=1

1

sinh
(√

2λb j

) . (30)

Having Eq. 30 we can use a probabilistic approach to compute Exi
[
e−λT

]
(instead

of trying to solve the problem Eqs. 25–28):
Assume X0 = xi. Let Ti be the (first) exit time from the line segment 0 < xi < bi,

so that X(Ti) = 0, or X(Ti) = bi, in which case Ti = T. Then we have

Exi
[
e−λT] = Exi

[
e−λT1{X(Ti)=bi}

] + Exi
[
e−λT1{X(Ti)=0}

]
,

or equivalently

Exi
[
e−λT] = Exi

[
e−λTi 1{X(Ti)=bi}

] + Exi
[
e−λT1{X(Ti)=0}

]
. (31)

The first term of the right-hand side of Eq. 31 can be computed by applying
Theorem 1 with n = 2, b 1 = bi, and b 2 = 0 (see also Chung and Zambrini 2001 or
Karatzas and Shreve 1991). The result is

Exi
[
e−λTi 1{X(Ti)=bi}

] =
sinh

(√
2λxi

)

sinh
(√

2λbi

) .
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Next we show how to compute the second of the right-hand side of Eq. 31 with the
help of the strong Markov property of Xt and Corollary 1. Let T0 be the (first) time
at which Xt hits 0. Then {X(Ti) = 0} = {T0 < T} and

Exi
[
e−λT1{X(Ti)=0}

] = Exi
[
e−λT1{T0<T}

] = Exi
{

E
[

e−λT1{T0<T}
∣∣FT0

]}
,

hence

Exi
[
e−λT1{X(Ti)=0}

] = Exi
{
e−λT0 1{T0<T} E0 [

e−λT]} = E0 [
e−λT]

Exi
[
e−λT0 1{T0<T}

]
,

i.e.

Exi
[
e−λT1{X(Ti)=0}

] = E0 [
e−λT]

Exi
{
e−λTi 1{X(Ti)=0}

}
.

Thus, by using Corollary 1 (and Theorem 1) we obtain

Exi
[
e−λT1{X(Ti)=0}

] = 1
∑n

k=1 coth
(√

2λb k

)

⎡

⎣
n∑

j=1

1

sinh
(√

2λb j

)

⎤

⎦
sinh

[√
2λ(bi − xi)

]

sinh
(√

2λbi

) .

We summarize our result in the following theorem:

Theorem 2

Exi
[
e−λT] =

sinh
(√

2λxi

)

sinh
(√

2λbi

)

+ 1
∑n

k=1 coth
(√

2λb k

)

⎡

⎣
n∑

j=1

1

sinh
(√

2λb j

)

⎤

⎦
sinh

[√
2λ(bi − xi)

]

sinh
(√

2λbi

) . (32)

Remark An interesting special case of the above theorem is when

b 1 = · · · = b n = b .

Then, formula 32 becomes

Exi
[
e−λT] =

sinh
(√

2λxi

)

sinh
(√

2λb
) +

sinh
[√

2λ(b − xi)
]

cosh
(√

2λb
)

sinh
(√

2λb
) .

Notice that there is no dependence on n. In particular

E0 [
e−λT] = 1

cosh
(√

2λb
) .

We finish the section with some more explicit formulas relating the exit time T and
the events Bj. The solutions uj

(
xj; λ

)
, j = 1, ..., n, of Eqs. 5–9 are entire functions of

λ (of order 1/2). If we expand them about λ = 0 as

uj
(
xj; λ

) = uj
(
xj; 0

) + λvj
(
xj

) + O
(
λ2) ,
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then v = (v1, ..., vn) satisfies the system

1
2
v′′

j = −uj
(
xj; 0

)
, j = 1, ..., n, (33)

v1(0) = · · · = vn(0), (34)

v′
1(0) + · · · + v′

n(0) = 0, (35)

vj
(
b j

) = 0, j = 1, ..., n. (36)

By Theorem 1

uj
(
xj; 0

) = 1
b j

∑n
k=1(1/b k)

(
1 − xj

b j

)
, (37)

if j �= 1 and

u1 (x1; 0) = x1

b 1
+ 1

b 1
∑n

k=1(1/b k)

(
1 − x1

b 1

)
. (38)

The solution v of the above problem has the probabilistic representation

vj
(
xj

) = Exj
[
T1Bj

]
(39)

since uj
(
xj; λ

) = Exj
[
e−λT1Bj

]
(this is Eq. 10) and

vj
(
xj

) = ∂

∂λ
uj

(
xj; λ

)∣∣∣∣
λ=0

.

Let us rewrite Eq. 33 in the form

1
2
v′′

j = γj
(
xj − b j

) + δj, j = 1, ..., n, (40)

where, in view of Eqs. 37 and 38

γj = 1
b 2

j

∑n
k=1(1/b k)

, δj = 0, (41)

for j �= 1, while

γ1 = 1
b 2

1
∑n

k=1(1/b k)
− 1

b 1
, δ1 = −1. (42)

Then a straightforward calculation gives that

vj
(
xj

) = γj
(
xj − b j

)3

3
+ δj

(
xj − b j

)2 + εj
(
xj − b j

)
, (43)

where

εj = δjb j −
γjb 2

j

3
+

∑n
k=1

(
δkb k − (2/3)γkb 2

k

)

b j
∑n

k=1(1/b k)
. (44)
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Finally if V = (V1, ..., Vn) satisfies the system

1
2

V ′′
j = −1, j = 1, ..., n, (45)

V1(0) = · · · = Vn(0), (46)

V ′
1(0) + · · · + V ′

n(0) = 0, (47)

Vj
(
b j

) = 0, j = 1, ..., n, (48)

Then

Vj(xj) = Exj [T] .

By taking

γj = 0, δj = −1

in Eqs. 43 and 44 we obtain the following corollary:

Corollary 2

Exj [T] =
[

b j +
∑n

k=1 b k

b j
∑n

k=1(1/b k)

] (
b j − xj

) − (
b j − xj

)2
,

or equivalently

Exj [T] = xj
(
b j − xj

) +
∑n

k=1 b k∑n
k=1(1/b k)

(
1 − xj

b j

)
.

In particular

E0 [T] =
∑n

k=1 b k∑n
k=1(1/b k)

.

3 A Generalization of the Arc-Sine Law

Let m be the Lebesgue measure of R
1. We introduce the occupation times of Sj:

�j(t) = m
{
s ∈ [0, t] : Xs ∈ Sj

} =
∫ t

0
1Sj (Xs) ds. (49)

Of course,

0 ≤ �j(t) ≤ t and
n∑

j=1

�j(t) = t. (50)

For n = 2 the famous arcsine law of P. Lévy states that (see, e.g. Karatzas and Shreve
1991)

P0 {�1(t) ≤ αt} = 1
π

∫ α

0

dr√
r (1 − r)

= 2
π

arcsin(α). (51)
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We want to extend the above formula for n > 2. Consider the problem

1
2
w′′

j

(
xj

) − αwj
(
xj

) − βjwj
(
xj

) = −1, j = 1, ..., n − 1, (52)

1
2
w′′

n (xn) − αwn (xn) = −1, (53)

w1(0) = · · · = wn(0), (54)

w′
1(0) + · · · + w′

n(0) = 0, (55)

wj
(
xj

)
bounded on Sj, j = 1, ..., n. (56)

Here α, β1, ..., βn−1 are parameters. The solution w = (w1, ..., wn) of this problem has
the Feynman–Kac representation (see, e.g., Freidlin 1885 or Karatzas and Shreve
1991)

wj
(
xj

) = Exj

[∫ ∞

0
e−αt exp

(
−

∫ t

0

n−1∑

k=1

βk1Sk (Xs) ds

)
dt

]
(57)

(notice that, for a given value of Xs, at most one of the quantities 1Sj (Xs) does not
vanish). In particular (see Eq. 49)

wj (0) =
∫ ∞

0
e−αt E0

[
exp

(
−

n−1∑

k=1

βk�k(t)

)]
dt, (58)

independently of j due to Eq. 54.
Now the solution of Eqs. 52–56 is

wj
(
xj

) = Aje
−xj

√
2(α+βj) + 1

α + βj
, j = 1, ..., n − 1,

and

wn (xn) = Ane−xn
√

2α + 1
α

,

where, in view of Eqs. 54 and 55, the constants A1, ..., An must satisfy

A1 + 1
α + β1

= · · · = An−1 + 1
α + βn−1

= An + 1
α

= wj(0)

and

A1
√

α + β1 + · · · + An−1
√

α + βn−1 + An
√

α = 0.

It follows that

wj(0) =
(

1√
α + β1

+ · · · + 1√
α + βn−1

+ 1√
α

)
1√

α + β1 + · · · + √
α + βn−1 + √

α
.



296 Methodol Comput Appl Probab (2012) 14:285–297

We summarize the above observations in the following proposition:

Proposition 1 Let

h (t; β1, ..., βn−1) = E0

[
exp

(
−

n−1∑

k=1

βk�k(t)

)]
, t ≥ 0,

where �k(t), k = 1, ..., n − 1, are the occupation times of Eq. 49. If

H (α; β1, ..., βn−1) =
∫ ∞

0
e−αth (t; β1, ..., βn−1) dt

is the Laplace transform of h, then

H (α;β1, ..., βn−1)

=
(

1√
α + β1

+ · · · + 1√
α + βn−1

+ 1√
α

)
1√

α + β1 + · · · + √
α + βn−1 + √

α
.

Remark If we set β1 = β and β2 = · · · = βn−1 = 0, then the above function h
becomes

h1 (t; β) := h (t; β, 0, ..., 0) = E0 [
exp (−β�1(t))

]
, t ≥ 0.

Let

H1 (α; β) =
∫ ∞

0
e−αth1 (t; β) dt.

Then

H1 (α; β) =
(

1√
α + β

+ n − 1√
α

)
1√

α + β + (n − 1)
√

α
.

For n = 2 we obtain the standard quantity that appears in the arcsine law.
If f (x; t) is the probability density function of �1(t), then, of course,

h1 (t; β) = E0 [
exp (−β�1(t))

] =
∫ ∞

0
e−βx f (x; t)dx.

Hence
∫ ∞

0

∫ ∞

0
e−αte−βx f (x; t)dxdt =

(
1√

α + β
+ n − 1√

α

)
1√

α + β + (n − 1)
√

α
.

4 Conclusion and Discussion

In this paper we have discussed a stochastic process Xt that lives on a system of S
semiaxes with a common origin. Xt does a standard Brownian Motion on each of
the semiaxes and when it hits 0, it continues its motion on the j-th semiaxis 1 ≤ j ≤
n, with probability 1/n. We have computed explicitly some exit probabilities and
the associated exit times. Our results extend certain classical results for the standard
Brownian Motion on R (e.g. the continuous gambler’s ruin problem). Furthermore,
we have made an attempt to extend the arcsine law of P. Lévy to the occupation
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times � j(t) of our process Xt on each branch of S. We have computed explicitly the
(double) Laplace transform of the density of � j(t). However the exact form of this
density remains an open problem.
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