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Abstract The aim of the present study was to design a

microscopy image analysis (MIA) system for predicting the

5-year survival of patients with laryngeal squamous cell

carcinoma, employing histopathology images of lesions,

which had been immunohistochemically (IHC) stained for

p63 expression. Biopsy materials from 42 patients, with

verified laryngeal cancer and follow-up, were selected from

the archives of the University Hospital of Patras, Greece.

Twenty six patients had survived more than 5 years and 16

less than 5 years after the first diagnosis. Histopathology

images were IHC stained for p63 expression. Images were

first processed by a segmentation method for isolating the

p63-expressed nuclei. Seventy-seven features were evalu-

ated regarding texture, shape, and physical topology of

nuclei, p63 staining, and patient-specific data. Those fea-

tures, the probabilistic neural network classifier, the leave-

one-out (LOO), and the bootstrap cross-validation meth-

ods, were used to design the MIA-system for assessing the

5-year survival of patients with laryngeal cancer. MIA-

system accuracy was about 90 % and 85 %, employing the

LOO and the Bootstrap methods, respectively. The image

texture of p63-expressed nuclei appeared coarser and

contained more edges in the 5-year non-survivor group.

These differences were at a statistically significant level

(p\ 0.05). In conclusion, this study has proposed an MIA-

system that may be of assistance to physicians, as a second

opinion tool in assessing the 5-year survival of patients

with laryngeal cancer, and it has revealed useful informa-

tion regarding differences in nuclei texture between 5-year

survivors and non-survivors.
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Introduction

Laryngeal cancer is the most frequent cancer among head

and neck neoplasms. It amounts to about 3 % of newly

diagnosed cancers and has poor prognosis. Risk factors for

laryngeal cancer [1] development include smoking, alco-

hol, heredity, occupational substances, and polluted envi-

ronment. Laryngeal cancer prognosis depends on factors

such as the cancer’s stage, involved site on the part of the

larynx, its grade, and the patient’s well-being and lifestyle

after the first diagnosis. In Europe, on average, 62.8 % of

patients with laryngeal cancer will survive for a 5-year

period after the first diagnosis [2]. The 5-year period is

statistically accepted as the time threshold where there is

little chance that the cancer of the larynx will reappear if it

has not recurred, provided that the patient has adopted a

healthy lifestyle. Early and accurate diagnosis are, thus,

important for adopting the right treatment and improving

patient survival. However, during the last two decades, the
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survival of patients with laryngeal cancer has not improved

significantly. Thus, researchers have focused on identifying

new prognostic factors for laryngeal cancer. One such

factor is the production of p63 protein by the TP63 gene

and p63 over-expression in epithelial neoplasms of the

head and neck squamous cell carcinomas [3–7]. p63 is a

nuclear protein homolog of the tumor suppressor p53,

involved in embryonic development, and is a marker of

non-invasive epithelial tumors. Loss of p63 accelerates

tumor genesis and metastasis. The predominant localiza-

tion of p63 protein is in the basal cells of normal epithelia

in the ectocervix, esophagus, prostate, skin, tonsil,

urothelium, and vagina and in basal cells in glandular

structures of breast, bronchi, prostate, and larynx.

A number of previous studies have attempted to assess

the survival of patients with laryngeal cancer by computer-

assisted image analysis methods, using hematoxylin and

eosin (H&E)-stained microscopy images. In these studies,

nuclei parameters were evaluated from microscopy images

and parameter thresholds were associated with patient

survival, such as the fractal dimension [8] that evaluates

texture heterogeneity of nuclei or parameters that evaluate

nuclei morphometry [9], such as nuclei concentration, area,

perimeter, density, and roundness.

In the present study, a microscopy image analysis (MIA)

system was designed for assessing the 5-year survival of

patients with laryngeal squamous cell carcinomas,

employing histopathology images of lesions, which had

been immunohistochemically (IHC) stained for p63

expression. Image analysis systems have been previously

developed (i) in two studies [10, 11] for categorizing

healthy, nodular, and diffuse color laryngeal images of

vocal folds, employing color microlaryngoscopy images,

and (ii) in one recent study by our group [12], for dis-

criminating low- from high-grade laryngeal lesions,

employing immunohistochemically staining for p63

expression histopathology images. The contribution of the

present study, within the sample of patients studied, is

twofold. First, it identifies cell nuclei parameters that sus-

tain statistically significant differences between patients

with laryngeal squamous cell carcinomas who survived for

more or less than 5 years after the first diagnosis. Second, it

proposes a decision support system, designed by employ-

ing image analysis methods, to assess with good precision

the 5-year survival of patients with laryngeal tumor.

Materials and methods

Clinical material

Biopsy materials from 42 lesions from an equal number of

patients, diagnosed with laryngeal squamous carcinomas

with known follow-up, were selected from the archives of

the Department of Pathology, University Hospital of

Patras, Rio, Greece. Twenty six of the patients had sur-

vived a 5-year period from the first diagnosis, while 16 died

before the end of the 5-year period. Patients had a mean

age of 63 years, ranging between 44 and 89 years; 42 were

male and there were no female patients, and most were

smokers (41/42). Laryngeal lesion sites (see Table 1) were

29 glottic, 10 supraglottic, and 3 were spread to more than

one laryngeal subsite. The 5-year non-survivors died due to

the disease. Clinical and pathological staging were

Table 1 Distribution of

squamous cell laryngeal tumors

with respect to lesion site, stage,

and histological grade and

among 5-year survivors and

5-year non-survivors

5-year survivors 5-year non-survivors Total

26 16 42

Lesion site Glottis 20 9 29

Supraglottic 4 6 10

Spread to subsites 2 1 3

Stage T2 6 2 8

T3 15 7 22

T4 4 7 11

N0 21 13 34

N1 2 2

N2 2 3 5

N/A 1 1

II 5 2 7

III 14 6 20

IV 7 8 15

Histological tumor grade Grade I 12 4 16

Grade II 9 6 15

Grade III 5 6 11

160 Eur Arch Otorhinolaryngol (2016) 273:159–168

123



determined following the American Joint Committee on

Cancer (AJCC) guidelines [13]. There were 8 T2, 22 T3,

and 11 T4 cases. There were 34 N0, 2 N1, and 5 N2 cases.

Seven cases were stage II, 20 stage III, and 15 stage IV. In

one case, the TNM (T: tumor size, N: lymph node

involvement, M: distant metastasis) evaluation was not

filed.

Biopsy sections were formalin fixed, paraffin embedded,

and specimens were hematoxylin and eosin (HE) stained

for histological tumor grade and stage assessment and

immunohistochemically (IHC) stained for p63 expression.

IHC staining was performed not automatically, but by a

standard streptavidin peroxidase method, using a Dako

Production, ready-to-use, monoclonal mouse antibody

clone DAK-p63/IsotypeIgG2a, kappa.

Sixteen cases were diagnosed as grade I, 15 as grade II,

and 11 as grade III. Tumor grade and p63 expression were

visually assessed by the same experienced histopathologist

(P.R.). The percentage of positive p63 expression was

above 50 % (most were within 60–90 %). This referred to

the percentage of positively expressed nuclei present in the

whole region (most heterogeneous region from where

images were captured) of the slide under examination.

Areas within that region with poor p63 expression were

discarded from the material of the present study. The study

was conducted in accordance with the guidelines of the

Declaration of Helsinki and of the ethics committee of the

University of Patras, Greece.

Capturing of p63-stained microscopy images

All areas of tumor were examined under the microscope

and the histopathologist selected and marked the most

heterogeneous region on each patient’s p63-stained slide.

From this region four images on average, with p63 nuclei

expression were digitized, using a Leica DM2500 light

microscope, equipped with a Leica DFC420C digital

camera. Images were captured at magnification of 4009

and resolution of 1728 9 1296 9 24bit (see Fig. 1a) and

stored on the hard disk of a dedicated host computer, which

was connected to the digital camera of the microscope.

Image capturing and storage were executed by means of

the Leica Application Suite (LAS) program, which also

was responsible for automatically regulating image-cap-

turing parameters such as focus, exposure time, gamma

value, and white balance. All areas of tumor on the slide

were examined and the most heterogeneous area selected.

Processing of p63-stained digital images

The digitized RGB images were next processed with the

purpose of identifying and outlining the p63-stained cell

nuclei within the image, which were obscured since they

were surrounded by other nuclear tissue. Following an

image-processing procedure, published in a previous study

by our group [14] and given here in brief, digitized images

were first transformed from the RGB scale into the L*a*b*

color space in accordance with the guidelines issued by

CIELAB (Commission International de l’Eclairage) [15],

Fig. 1 a Digitized frame from p63-stained specimen. b Binary image

of p63-expressed nuclei; c the final segmented image, where only the

nuclei are visible
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where L* is the difference between light and dark inten-

sities, a* is the red-green scale, and b* is the blue-yellow

scale. This facilitated the application of image-processing

algorithms, for making nuclei localization and outlining

easier. Image segmentation for nuclei detection was

accomplished by means of the fuzzy c-means algorithm

[16]. The latter formed three pixel clusters: image pixels of

p63-expressed nuclei (brownish), of non-expressed nuclei

(bluish), and of non-nuclei tissue (whitish). Using the pixel

coordinates of the brownish pixels and in conjunction with

morphological filters, a binary image (see Fig. 1b) was

formed, in which pixels that were set (white) corresponded

to pixels of the p63-expressed nuclei. By combining the

binary image with the original RGB image, via a logical

AND operation, an RGB image resulted, containing only

segmented nuclei (see Fig. 1c). The correctness of the

process was evaluated by inspection by an experienced

pathologist (P.R.) using a specially designed custom soft-

ware. Accordingly, the original RGB image and its corre-

sponding segmented image were concurrently displayed on

the PC monitor. The segmented image contained only

objects that had been identified by the segmentation soft-

ware as nuclei. The physician had the task of inspecting

both images and identifying on the segmented image true

nuclei, by clicking on them and excluding objects that were

mistakenly considered by the segmentation software as

nuclei.

Feature generation

Seventy-one features were generated from the nuclei, and

each case was represented by a 71-feature vector, the mean

feature values of all nuclei contained in the patient images.

Additionally, 6 more features were included, which were

patient specific, thus forming a 77-feature vector. Two files

were formed, a 16 9 77 file, consisting of the feature

vectors of the 16 patients of the ‘‘5-year non-survivors’’

class and a 26 9 77 file comprising the feature vectors of

the 26 patients of the ‘‘5-year survivors’’ class. The 71

nuclei-related features were generated using the grayscale

version of the RGB-processed images. Four features were

calculated from the nucleus image matrix; the mean value,

standard deviation, skewness, and kurtosis; 26 features

from the four co-occurrence matrices (mean and range) of

the nucleus image [17]; 10 features from the four run-

length matrices (mean and range) [18] of the nucleus

image. Ten features were generated that evaluated the

morphology of the nuclei (area, perimeter, eccentricity,

length major axis, length of minor axis, convex area,

solidity, equivalent diameter, rectangularity, compactness).

Seven features were calculated from the minimum span-

ning tree (MST) that reflects the topology of the nuclei

within the image (mean, range, standard deviation,

maximum, minimum, sum, and total length) [19]. One

feature was evaluated from the fractal dimension, which

has been shown to be a prognostic factor in laryngeal

carcinoma [8]. Six features were calculated from the out-

line of the nucleus (mean, standard deviation, range and

entropy of the radial distance, circularity ratio, and

roughness index). Six features were computed from the

two-level two-dimensional discrete wavelet transform

(energy of level 1 and level 2 horizontal, vertical, and

diagonal detail coefficients). One feature evaluated the

percentage of p63-expressed nuclei in the patients’ four

digital images, since it has been claimed in a previous

study [6, 7] that p63 under-expression has been correlated

with poor prognosis. Most of the above 71 features are

functions readily available in Matlab. Nuclear features

were also normalized to zero mean and unit standard

deviation, employing �fi ¼ fi � lð Þ=r where �fi is the nor-

malized version of feature fi, and l and r are the mean

and standard deviations of the feature, both calculated

over all patterns of both classes (low or high laryngeal

lesions).

Six patient-related features were also quantified, four

concerning patient’s age, smoking, alcohol consumption,

and work-related risk factors; two were disease-specific

features, related to tumor stage and grade. Smoking and

alcohol consumption were ranked on a scale of 0–4, with 4

corresponding to longtime heavy smokers or drinkers.

Work-related risks were measured on a scale 0–2, with 2

referring to working for a very long period in environments

posing risks for laryngeal cancer, such as diesel exhaust,

asbestos, organic solvents, metal dust, asphalt, wood dust,

stone dust, mineral wool, cement dust, and pesticide. Age

was evaluated as a continuous feature, histological tumor

grade was ranked on a three-grade scale (I, II, III), and

tumor stage on a four-stage scale (I–IV). All patient-related

features, with the exemption of age, were normalized to a

standardized value between zero and one [0, 1] by means

of f ¼ r�1
R�1

[20], where r = 1 to R refers to the feature’s

ranking scale.

Statistical analysis

Statistical analysis consisted of determining those features

that sustained statistically significant differences between

the classes of 5-year non-survivors and survivors,

employing the Wilcoxon statistical test [21]. This was an

important measure undertaken to reveal the distinct prop-

erties in nuclear texture, shape, nuclei distribution, or

patient-specific features that differentiate the two classes.

Additionally, the correlation between each feature and

patients’ survival, in terms of a two-stage decision, ‘‘5-year

non-survivors’’ and ‘‘5-year survivors’’, was evaluated
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employing the Point Biserial Correlation, designed for such

dichotomous variables [21]. The importance of such mea-

sure was to verify the validity of trends in feature values

with increasing patient survival.

Class discrimination

In designing an MIA-system to estimate 5-year survival of

patients with laryngeal cancer, there were the following

stages.

First, a classifier had to be chosen that was fast in

execution and of high discriminatory ability. Following

repeated experimentation, the probabilistic neural net-

work (PNN) [22] classifier with Gaussian kernel was

employed, as it is simple to design and fast in execution,

since it does not incorporate sophisticated convergence

algorithms and, for the particular problem at hand, per-

formed equally well in precision as other more sophisti-

cated classifiers, such as the SVM [23]. The PNN

discriminant function is given by Gj Xð Þ ¼ A
PNj

i¼1

expð�jjX � Fjijj=2s2Þ, where A ¼ 1= ð2pÞðn=2Þ
snNj

� �
, X is

the test pattern vector to be classified, n the number of

features employed in the feature vector, s a smoothing

parameter, here set to 0.2 after experimentation, Nj the

number of patterns in class j, and Fj,i the i-th training

feature vector of class j. The input feature vector X belongs

to the class j with the higher discriminant value, Gj (X). As

it may be deducted from the equation, for the classifier to

be optimally designed for highest precision, a combination

of features Fj,i of high discriminatory power would have to

be selected among the 77 available features. That best

feature vector would have to be as small as possible and

should additionally provide the highest MIA-system dis-

crimination accuracy. One way to build high-precision

MIA-systems is to examine the classification accuracy, by

forming all possible combinations of the available features,

and at each combination to test the precision of the

designed system by means of a cross-validation method,

such as the leave-one-out (LOO) method. The latter

requires that the system is built by all but one pattern,

which is then classified, and this process is repeated by

sequentially testing all available patterns in both classes,

eventually ending up with a number of correctly classified

patterns that determines the MIA-system’s precision at a

particular feature combination. The optimal MIA-system

design is then chosen as the design that employs a com-

bination with the least number of features and provides the

highest classification accuracy. However, testing all pos-

sible feature combinations would have required a large

number of feature combinations to be formed, as dictated

by the formula
Pn

k¼1
n!

ðn�kÞ!k!, where n = 77 and k the

number of features in the combination [24]. The number of

feature combinations was reduced by following a rule of

thumb [24], which states that to avoid overfitting, the

maximum number of features employed in any combina-

tion should be less than one-third of the number of pat-

terns in the smallest of the two classes. Considering that in

the present study the smallest class contained 16 patterns,

k in this equation should not exceed five-feature combi-

nations. Nevertheless, the number of feature combinations

to be tested was still large enough and would have become

even larger when, at each feature combination, the LOO

validation method was applied, which requires that the

MIA-system is redesigned as many times as the total

number of patterns in both classes (42 patterns). Practi-

cally, the task could not have been accomplished on a

desktop computer, using sequential programming tech-

niques, due to substantial time-processing requirements.

Consequently, the design of the MIA-system was trans-

ferred to the multi-processors of an Nvidia Graphics

Processing Unit (GPU) card, using CUDA (Compute

Unified Device Architecture) toolkit v4.0, the C/C??

programming environment [25], and employing parallel

programming techniques. The whole process has been

presented in previous studies published by our group [12,

26]. In short, the graphics card used was the Nvidia Tesla

K20c, equipped with 13 multiprocessors of 192 cores

each, which were programmed in parallel. The GPU card

was housed in a desktop computer equipped with the Intel

QUAD Core CPU at 2.83 GHz processor and 4 GB of

RAM. Parallel processing involved (a) breaking down the

problem into small tasks, such as the design of the PNN

by one feature combination and evaluation of its accuracy

by the LOO validation method, (b) loading each task on a

single GPU thread that runs concurrently along with

numerous such tasks on other threads of the different cores

of the GPU multiprocessors, and (c) transferring the

results to the desktop computer, where the best design is

isolated.

The MIA-system’s performance was also verified by the

AUC (area under the curve) of the ROC curve [24], using

the PNN classifier, the LOO cross-validation method, and

the same feature combination as the combination used in

the best MIA-system design. AUC may vary between 0.5

and 1 and for AUC values greater than 0.9 the accuracy of

discrimination is rated as ‘‘excellent’’. AUC is indicative of

how well the PNN classifier, designed by a particular

feature combination, can discriminate between the two

classes of ‘‘5-year non-survivors’’ and ‘‘5-year survivors’’.

The MIA-system’s generalization performance was tested

by means of the Bootstrap [24] method, where the original

dataset was split ten times in training and test sets, and at

each split a contingency classification table (truth table) was

formed. The mean overall accuracy would be an indicator of

the proposed system’s performance to new data.
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Results

The expert physician examined the segmented images from

all patients and it was found that the accuracy of the seg-

mentation algorithm, as compared to the expert physician

in correctly identifying nuclei was approximately close to

90 % (88.7 %), which was in line with similar findings of

previous studies [14, 27–29]. The resulting segmented

images were stored to be employed for further processing.

Features were subjected to the Wilcoxon non-parametric

statistical test to identify those features that sustained sta-

tistically significant differences between the two classes of

patients. Six such features were found, all emanating from

the same family of features, calculated by means of the

discrete wavelet transform (energy of the dwt-features)

[24]. As shown in Table 2, statistically significant differ-

ences (p\ 0.05) between the two classes were found for

features calculated from the first-level decomposition

(H_L1, V_L1, D_L1) and second-level decomposition

(H_L2, V_L2, D_L2) of the nuclei images; H, V, and D

stand for horizontal, vertical, and diagonal two-dimen-

sional detail coefficient matrices, respectively, and L1 and

L2 represent first-level and second-level decompositions,

respectively. The values of all those features decreased

with increasing laryngeal cancer survival, and this negative

correlation was at a statistical confidence level of p\ 0.05,

as shown in the third column of Table 2. The last two

columns of Table 2 show class means, standard deviations,

and medians of the 5-year non-survivors and 5-year

survivors.

Figure 2a–f shows the box plots of the six dwt-features

and the class median values, represented by the horizontal

line within each box, from where the class differences in

dwt-feature values become evident. However, a closer look

at the box plots would reveal that, although each dwt-

feature sustained statistically significant difference

between the two classes, there was a significant overlap in

the distribution of the dwt-feature values in the two classes.

This also becomes evident from the mean and standard

deviation values in Table 2. This limits the option of

employing one such dwt-feature to propose an index for

assessing the probability of a new patient as belonging to

either class. For this to be feasible, one would have to

combine information from different features, not neces-

sarily only from those features sustaining statistically sig-

nificant difference between the two classes, to separate the

classes as further apart as possible in a multidimensional

feature space. Such a feature combination could then be

used to derive a multi-dimensional index or discriminant

function that would predict with high precision if a new

case would belong to either the 5-year non-survivor or

5-year survivor classes.

Such a design was achieved using the PNN classifier and

the exhaustive search method for forming feature combi-

nations, and the LOO evaluation method for assessing

MIA-system precision, on the multiprocessors of the GPU.

This best MIA-system design was achieved by a five-fea-

ture combination; sum average (mean), difference entropy

(range), roughness index, level one diagonal detail coeffi-

cients matrix of discrete wavelet transform decomposition,

and the tumor grade; the mean stands for the average of

four feature values and range signify the maximum spread

between the four feature values, which were calculated

from the four co-occurrence matrices along the four main

directions (E, NE, N, NW) on the nucleus surface [17]. The

first two of the best textural features (sum average and

difference entropy) were calculated from the co-occurrence

matrices of the nucleus image, the third was evaluated from

the shape of the nucleus outline (roughness index), the

fourth (level 1 diagonal dwt-feature) was computed from

the texture of the nucleus image, and the last (tumor grade)

was quantified from the histological grade of the tumor.

Table 3 is a classification table that gives the accuracy

with which the MIA-system assigned the laryngeal tumor

cases into the two classes. As it may be observed, two

5-year survivor cases were mistakenly classified as 5-year

non-survivors, resulting in a partial system accuracy

(specificity) in survivors of 92.3 % and two 5-year non-

Table 2 Mean, median, and standard deviation of features that sustained statistically significant differences between 5-year non-survivors and

5-year survivors of laryngeal squamous cell carcinoma (see Table 3 for feature label explanation)

Feature

label

Statistically significant

difference (p\ 0.05)

Correlation r/at p confidence

level (p\ 0.05)

(5-year non-survivors) mean

value ± std/median

(5-year survivors) mean

value ± std/median

H_L1 0.030564 -0.340/0.028 234,174 ± 40,494/227,166 198,714 ± 64,838/186,551

V_L1 0.020444 -0.364/0.018 244,623 ± 56,699/233,429 201,920 ± 71,032/183,427

D_L1 0.034781 -0.332/0.032 97,010 ± 18,404/93,262 83,387 ± 25,315/77,453

H_L2 0.025065 -0.352/0.022 314,493 ± 55,359/313,915 265,306 ± 89,339/248,935

V_L2 0.028626 -0.344/0.026 335,065 ± 83,859/320,681 275,758 ± 101,236/252,668

D_L2 0.034781 -0.332/0.032 85,037 ± 16,426/81,059 72,561 ± 22,858/66,331

H, V, and D stand for horizontal, vertical, and diagonal detail coefficients of the two-level (L1 and L2), two-dimensional discrete wavelet

transform features
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Fig. 2 Box plots of the discrete wavelet transform features, sustain-

ing statistically significant differences (p\ 0.05) between the ‘5-year

non-survivors’ and the ‘5-year survivors’ with laryngeal squamous

cell carcinomas. The H, V, D, L1, and L2 stand for the energy

features calculated from the horizontal, vertical, diagonal, level 1, and

level 2 detail coefficients of the discrete wavelet transformation,

respectively

Eur Arch Otorhinolaryngol (2016) 273:159–168 165

123



survivors were incorrectly assigned to the wrong class,

resulting in a partial system accuracy (sensitivity) for non-

survivors of 87.5 %, thus, giving an overall MIA-system

classification accuracy of 90.5 %. The Cohen–Kappa test

statistic was also applied and gave an index value of 0.8,

which was rated as a ‘very good’ indicator that the result

was not achieved by chance.

Class separability was also obtained by means of the

ROC curve, when using those five best features, the PNN

classifier, and the LOO cross-validation method. Figure 3

shows the ROC curve and the area under the curve

(AUC = 0.96), which indicate an excellent degree of class

separation.

The generalization performance of the MIA-system was

evaluated by means of the bootstrap method over ten rep-

etitions and the mean overall accuracy was found to be

85.2 ± 7.6 %.

Discussion

The task of the present study was to examine the biopsy

specimens of patients diagnosed with laryngeal squamous

cell carcinoma, analyze microscopy image parameters,

examine patient-related data for identifying differences

between short-time (\5 years) and long-time ([5 years)

survivors of laryngeal cancer, and finally design a micro-

scopy image analysis system for assessing the patients’

5-year survival. H&E and p63 staining were used on

specimens of the biopsy material. Patients were split into

two groups: those who had survived the 5-year threshold

and those who had not.

First, using p63-stained digitized images from each

patient, associations were sought of the nuclei properties or

features, such as texture, shape, morphology, and distri-

bution of p63-stained nuclei, as well as patient-related data

with the patient’s 5-year survival; second, a decision sup-

port system was designed, based on image analysis meth-

ods and features, for estimating the patient’s 5-year

survival. Image-processing and statistical analysis tasks

were performed on a conventional desktop computer and

image analysis tasks were accomplished on the

microprocessors of a graphics-processing unit card using

parallel-processing techniques.

Previous studies that have investigated the survival of

patients with laryngeal cancer, employing computer anal-

ysis of histopathologic images [8, 9], have evaluated cell

nuclei features regarding texture, morphology, or shape,

using H&E-stained images of biopsy specimens. They have

found that fractal dimension [8], cell concentration, nuclear

area, perimeter, density, and roundness [9] were important

cell nuclei features, and associated threshold values in

those features with patient survival. In the present study,

we used images from laryngeal cancer biopsy material that

had been IHC stained for p63 expression, since p63 mainly

targets the cell nuclei and probably renders the nuclei’s

texture and outline to be more discernible. Statistical

analysis showed that out of 77 features, only those calcu-

lated from the two-dimensional discrete wavelet transform

sustained statistically significant differences between the

two classes of patients. There were no significant differ-

ences found between classes regarding fractal dimension,

as in [8], or morphological features as in [9], although

Fig. 3 The receiver operating characteristic (ROC) curve between

the ‘5-year non-survivors’ and the ‘5-year survivors’ with laryngeal

squamous cell carcinomas using features determined in the best MIA-

system design. The area under the curve is also presented

Table 3 Classification table of

PR-system’s best design
Truth table

Classified cases[5-year Survival Classified cases[5-year Survival Accuracy (%)

[5-year survival 24 2 92.3

B5-year survival 2 14 87.5

90.5

Five features involved: sum average (average), difference entropy (range), level 1 diagonal detail coeffi-

cients matrix of the two-dimensional discrete wavelet transform, roughness index, and tumor grade
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different IHC-staining methods were employed. However,

the importance of textural, shape, and patient-related fea-

tures was revealed in the present study, by means of the

five features used in the best design of the MIA-system.

From the box plots of Fig. 2 and the contents of Table 2,

it can be deduced that the values of all six dwt-features

decreased with good prognosis; 5-year survivors demon-

strated lower values of dwt-features. This decrease was

also verified by examining the correlation of those features

with improving prognosis. Negative correlation with higher

survival was established at a statistically confident level

(p\ 0.05). Regarding the textural information that these

features hold, dwt-features depict the energy (or the sum of

squares of pixel values) of images produced at two levels

of decomposition as follows. At the first level (L1), the

‘horizontal detail’ (H) image was produced by processing

the original nucleus image by vertical high-pass and hori-

zontal low-pass filtering and it contains mainly the hori-

zontal edges of the original image. The ‘vertical detail’

image (V) was obtained by vertical low-pass and horizontal

high-pass filtering and mainly contains the vertical edges of

the original image. The ‘diagonal detail’ image (D) was

obtained by vertical and horizontal high-pass filtering and

contains the edges of the original image in the diagonal

direction. At the second level (L2), features were calcu-

lated from detailed images (H, V, and D), produced in a

similar way that images were formed at the first level, but

at a lower resolution. In accordance with our findings, and

since edges reflect high-frequency image content as well as

image coarseness, it may be assumed that patients who

survived 5 years after laryngeal cancer diagnosis appeared

to have smoother nuclei images as compared to those who

did not survive and whose nuclei structure appeared

coarser.

Regarding the design of an MIA-system to predict

patient’s 5-year survival, there were few factors to consider

that influenced such an attempt. Such factors included the

dimensionality of the problem, the choice of the classifier,

and the need to design a system that would have high

precision in classifying data not used in the system design

[30].

Dimensionality poses serious computer time demands,

which were dealt with by transferring system design onto

the microprocessors of a graphics processing unit card

using parallel processing techniques. It took about 3.3 min

for a desktop computer, equipped with the Nvidia GPU, to

design and test the MIA-system precision, using the LOO

cross-validation method.

Regarding the choice of classification algorithm, those

considered were [24, 31] the nearest neighbor, the Baye-

sian, the probabilistic neural network, the linear discrimi-

nant analysis, and the support vector machine. Classifiers

were tested with regard to speed of execution, robustness,

computational complexity, and accuracy in discriminating

between the classes of the present study. The PNN classi-

fier, employing the Gaussian kernel, was the classifier of

choice, due to its speed of execution and accuracy, around

which the classification system was built.

Results showed that the best feature combination that

produced the MIA-system design with the highest classi-

fication accuracy included features from the nucleus’s

texture (sum average mean, difference entropy range,

energy at level-one dwt diagonal detail image), the shape

(roughness index), and the lesion’s severity (grade). Sum

average assesses gray-level inhomogeneity, in terms of the

existence of structures with variation in gray levels and

attains higher values in coarser textures. Difference entropy

range is a measure of anisotropy in gray-levels randomness

and attains high values for equally distributed gray-tone

differences or for images with low variation in image

contrast. Energy at level-one dwt diagonal detail image

assesses image coarseness and was the only feature in the

best feature combination that sustained statistically sig-

nificant difference between 5-year survivors and non-sur-

vivors. Roughness index is a measure of the nucleus outline

irregularity, and tumor grade is a feature related to the

severity of the disease. The results are presented in

Table 3. Two cases of the ‘‘5-year survivor’’ class were

wrongly assigned to the ‘‘5-year non-survivor’’ class and

two cases of the latter were wrongly classified as 5-year

survivors, giving an overall accuracy of 90.5 %. The gen-

eralization of such performance was put to test by a less

biased method (bootstrap) that revealed a mean accuracy of

about 85 %. Another way of looking at the between-classes

discrimination is by constructing the ROC curve using the

PNN classifier, the same best feature combination, and the

LOO cross-validation method. The area under the curve of

0.96 indicates excellent class separation by the particular

MIA-system design.

Conclusions

Summarizing, an image analysis system has been designed

to discriminate the laryngeal cancer cases of the present

study, with reasonably high accuracy, into ‘‘5-year non-

survivors’’ and ‘‘5-year survivors’’, employing immuno-

histochemical staining for p63 expression and

histopathology images. MIA-system design was feasible by

transferring data processing onto the processors of a

graphics processing unit and applying parallel processing

methods. Features related to the nucleus image high-fre-

quency content, the anisotropy of the nucleus image gray-

level randomness, the nucleus shape, and the tumor grade

contributed in the design of the best MIA-system. Discrete

wavelet transform features, related to the existence of
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edges in the nucleus texture, revealed that nucleus texture

in 5-year non-survivors was coarser at a statistically sig-

nificant level. The proposed system was designed so as to

function in a clinical environment, as a second opinion

diagnostic tool.
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