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An update on red blood cell storage lesions, as gleaned through
biochemistry and omics technologies
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Kirk C. Hansen,1 Issidora S. Papassideri,4 and Lello Zolla3

Red blood cell (RBC) aging in the blood bank is charac-
terized by the accumulation of a significant number of
biochemical and morphologic alterations. Recent mass
spectrometry and electron microscopy studies have pro-
vided novel insights into the molecular changes under-
pinning the accumulation of storage lesions to RBCs in
the blood bank. Biochemical lesions include altered
cation homeostasis, reprogrammed energy, and redox
metabolism, which result in the impairment of enzymatic
activity and progressive depletion of high-energy phos-
phate compounds. These factors contribute to the pro-
gressive accumulation of oxidative stress, which in turn
promotes oxidative lesions to proteins (carbonylation,
fragmentation, hemoglobin glycation) and lipids
(peroxidation). Biochemical lesions negatively affect
RBC morphology, which is marked by progressive
membrane blebbing and vesiculation. These storage
lesions contribute to the altered physiology of long-
stored RBCs and promote the rapid clearance of up to
one-fourth of long-stored RBCs from the recipient’s
bloodstream after 24 hours from administration. While
prospective clinical evidence is accumulating, from the
present review it emerges that biochemical, morpho-
logic, and omics profiles of stored RBCs have observ-
able changes after approximately 14 days of storage.
Future studies will assess whether these in vitro obser-
vations might have clinically meaningful effects.

I
n most countries, the shelf life of red blood cells
(RBCs) is limited to 42 days. However, results from
retrospective clinical trials have hinted at a correla-
tion between untoward consequences in certain cat-

egories of recipients (e.g., traumatized, critically ill, or
perioperative patients) and transfusion of RBCs stored
longer than 14 days.1,2 While clinical prospective evidence
is still missing or inconclusive,3 an accumulating body of
evidence indicates that biochemical and morphologic
lesions to stored RBCs tend to accumulate soon after the
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second week of storage (Fig. 1).4-9 The bulk of this evidence
comes from the application of mass spectrometry–based
metabolomics, proteomics, and lipidomics to the field of
transfusion medicine, as we will discuss in this review.

Omics disciplines are characterized by the systematic
determination and quantification of broad classes of mol-
ecules, such as metabolites (low-molecular-weight com-
pounds below 1.5 kDa), proteins,8 and lipids.10 Data from
multiple omics platforms can be then integrated through
bioinformatic approaches and mathematical modeling to
obtain a systems biology level of understanding.11

AGING IN VIVO AND IN VITRO

A deeper understanding of the molecular mechanisms
driving RBC aging in the blood bank should aid in the
design of new storage strategies to extend the shelf-life of
RBCs. However, these mechanisms have been only par-
tially disclosed and are incompletely understood.4-7

RBC aging in vivo and in vitro are characterized by
distinct mechanisms.7,12,13 In vivo circulating RBCs have
an approximate life span of 120 days.13 Approximately
1×1011 RBCs are generated every day and cleared from the
bloodstream by residential macrophages in the reticulo-
endothelial system, through a synchronized mechanism
underpinning their generation and senescence in periph-
eral blood.7,13,14

Circulating RBCs are characterized by heteroge-
neous RBC populations,15,16 and RBC populations are dif-
ferentially affected by injuries in vivo13,16 or storage in the
blood bank.17 Although up to 25% of the transfused RBCs
is rapidly removed from the bloodstream of the recipient,
RBCs that survive the first 24 hours in circulation have
a normal or near-normal survival.18 This evidence
strengthens the case for an increased susceptibility of
certain RBC populations to the so-called “storage
lesions.”17,18

While in vivo aging of RBCs culminates with senes-
cence, aging in vitro has been also associated with
eryptosis, a controversial process that closely mimics the
programmed cell death of nucleated cells (apoptosis).14

Eryptotic phenomena in vivo result from injury or
(oxidative) stress to RBCs.16 Under blood bank condi-
tions, ensuing of eryptosis is tied to storage lesions
(Fig. 2).13

In the following paragraphs we will relate the accu-
mulation of biochemical and morphologic storage lesions
to the impaired physiology and functionality of RBCs.
Focus will be on biochemical and omics studies on oxygen
transport, cation homeostasis, energy and redox metabo-
lism. The association of these storage-influenced bio-
chemical variables to the compromised protein and
structural integrity of long-stored RBCs will be explored.
Finally, we will discuss the donor variability issues, as they

Fig. 1. Dynamics of the main biochemical lesions during RBC storage. Time course Z-score normalized quantitative changes of bio-

chemical and morphologic variables during storage durations. Heat maps (left) and sparklines (right) have been graphed based on

reelaboration of originally published results.8,9,19,21,26,59,64,65 Quantitative changes are graphed either in blue (decrease) or in red

(increase) against normalized values.

D’ALESSANDRO ET AL.

206 TRANSFUSION Volume 55, January 2015



Fig. 2. An overview of the main biochemical changes of in vitro aging RBCs under blood bank conditions. In clockwise order: (1)

Cation homeostasis is influenced by low temperatures and depletion of ATP and DPG. (2) Glucose is consumed through glycolysis,

as to produce ATP and lactate (LAC) and promote pH lowering. (3) Low temperatures and oxidative stress (Hb-mediated Fenton

reactions) promote the PPP and impair GSH homeostasis. (4) Alterations to calcium homeostasis (as well as of cAMP and AMP)

promote kinases (e.g., PKC, PKA, AMPK) or proteolytic enzymes (such as calpains) targeting Band 3 (AE1) and structural proteins.

(5) AE1 modulates pH through the chloride shift and indirectly influences Hb-oxygen affinity and gas exchanges. Fragmentation of

the cytosolic domain of AE1 (by ROS, calpain, and caspases) displaces glycolytic enzymes and structural proteins (ankyrin [ANK],

Band 4.2, and Band 4.1). (6) Protein oxidation is partly challenged by antioxidant defenses (SOD1, PRDX2) and chaperone mol-

ecules (heat shock proteins [HSPs]). Still, storage promotes redox modifications to proteins (carbonylation, glycation of Hb, frag-

mentation) and lipids. (7) Storage affects degradation of proteins (via the proteasome, extruded in the supernatant) and lipids

(sphingomyelinase-dependent accumulation of ceramides). (8) Storage promotes membrane accumulation of AE1 clusters, expo-

sure of PS in the outer leaflet, and lipid raft formation that could alter the RBC proimmunogenic potential. (9) These alterations

affect membrane deformability, increase osmotic fragility, and promote vesiculation events, a process through which micro- and

nanovesicles are shed as to eliminate irreversibly altered proteins (among which traces of glycolytic enzymes). (10) Exocytic

vesicles are enriched with Hb, lipid raft proteins, and membrane portions (also exposing common antigens).
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influence transfusion outcomes and hitherto hampered
omics investigators from drawing universally valid
conclusions.

OXYGEN TRANSPORT

Administration of transfusion therapies in the intensive
care setting is associated with the need to restore tissue
oxygenation, volemia, and blood viscosity in response to
hemorrhagic shock. Long-stored human RBCs are charac-
terized by a higher oxygen affinity, since pO2 is essentially
unchanged between 3 hours and 14 days, whereas hemo-
globin (Hb) O2 saturation increases steadily throughout
storage duration up to 99% by Storage Day 42.19 Consis-
tently, a storage-dependent increase in O2 affinity was
recently confirmed,20 although in vitro interactions with
oxygen were largely preserved through 42 days of
storage.20 Such effects are promoted by the storage-
dependent consumption of high-energy phosphate
compounds (adenosine triphosphate [ATP] and 2,3-
diphosphoglycerate [2,3-DPG]).21 These compounds are
known to act as allosteric effectors as they stabilize the “T”
(deoxygenated) state of Hb and thus their decrease posi-
tively affects Hb-oxygen affinity.20 However, it is worth
noting that oxygen offloading from Hb is promoted by
intracellular acidification (Bohr effect), a condition that is
observed during storage in the blood bank,22 as a result of
ongoing glycolysis (Embden-Meyerhoff energy metabo-
lism pathway).21 Conversely, the decrease in pH has a
negative feedback on glycolysis.23 Storage is also accom-
panied by deregulated S-nitrosylation of Hb at β93cys,
suggesting a likely compromised “hypoxic vasodilation”
capacity of longer-stored RBCs.19

However, it has recently been concluded that,
although fresh RBCs might be superior to long-stored
RBCs, increased oxygen affinity of “older” RBCs may
provide a benefit in hemorrhagic shock resuscitation.24

CATION TRANSPORT

Hypothermia during storage in the blood bank is known to
negatively influence the activity of cation transporters.25

Older RBCs display altered Na+/K+ fluxes,9,19 resulting in
the supernatant accumulation of potassium, a pitfall com-
promising transfusions to certain recipients, such as pedi-
atric patients. Impaired potassium homeostasis is also
linked to the progressive increase of intracellular ionic
calcium.21,26,27 Depletion of ATP promotes calcium
build-up in the cytosol,21 since internal Ca2+ is subjected to
metabolic control via an ATP-dependent extrusion
mechanism (Ca2+ pump). As a consequence, intracellular
calcium accumulation triggers the opening of the Ca2+-
dependent K+ channel, other than the activation of
calcium-dependent proteases (such as μ-calpain) while
promoting the onset of apoptosis-like phenomena.3

However, eryptosis in long-stored RBCs is mainly tied to
starvation (depletion of high-energy phosphate com-
pounds) rather than to calcium alone.28 Calcium loading
also results in dose-dependent decreases in reduced glu-
tathione (GSH) levels in rabbit RBCs29 and promotes glu-
tathione S-transferase migration to the cell membrane in
human RBCs.30

ENERGY AND REDOX METABOLISM

Efficiency of energy metabolism is measured by the rate of
high-energy phosphate compound generation. These
metabolites serve as energy tokens to be spent on the
preservation of cellular homeostasis. For example, ATP
levels influence membrane stability and thus RBC sur-
vival.31 However, alterations to DPG, ATP, and cation
imbalances are rapidly reversible upon transfusion of
RBCs in the bloodstream of the recipients.32

Energy and redox metabolism are intimately con-
nected in RBCs, which can rely on glycolysis to generate
approximately 90% of cell energy through anaerobic oxi-
dation of glucose.7 In response to high oxygen saturation
and oxidative stress, glucose catabolites are channeled
through the pentose phosphate pathway (PPP) to fuel the
generation of NADPH and maintain GSH redox poise.
Branching from glycolysis, the Rapoport-Luebering shunt
interconverts the 1,3- and 2,3-isoforms of DPG, thereby
connecting energy metabolism to Hb-oxygen affinity.7

Glycolysis also influences the NADH/NAD+ ratio. NADH
contributes to redox homeostasis by promoting ferric
heme iron reduction back to the ferrous state, a reaction
catalyzed by the NADH-dependent enzyme cytochrome
b5 reductase in the methemoglobin reduction pathway.7

As the list of proteins in the RBC proteome rapidly
expands through modern proteomics approaches
(recently extended to 2289 entries and counting),33,34

novel or hitherto underinvestigated RBC metabolic path-
ways might emerge in the future as key players in the
accumulation of storage-triggered metabolic lesions. In
analogy to cancer-induced alterations to cell metabolism,
examples might be represented by serine and glutamine
metabolism and their indirect role in GSH homeostasis.35

Energy metabolism
RBC storage is characterized by the progressive depletion
of ATP and DPG reservoirs, a phenomenon facilitated by
the negative influence of hypothermia on enzyme activi-
ties. Nevertheless, storage is accompanied by the constant
accumulation of lactate in the supernatants.21 Storage of
RBCs in CPD-SAGM,21,36,37 MAP,38 AS-1,39 or PAGGGM40,41

results in the early accumulation of glycolytic intermedi-
ates during the first 2 weeks of storage and rapid decrease
soon afterward. These observations likely arise from a
metabolic modulation that promotes a shift toward the
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PPP via partial glycolytic blockade. However, the ratio of
metabolic intermediates of the PPP and glycolysis21,36

indicates that such a compensatory mechanism, whether
confirmed, might only be transient and progressively
impaired35 from the second storage week onward.21 Alka-
line additives or rejuvenation solutions are currently
under evaluation as they have been reported to better pre-
serve, or to replenish, ATP and DPG reservoirs even upon
extended storage.42

Redox metabolism
Storage of RBCs results in the progressive deregulation of
the redox poise, as it is accompanied by decreased GSH
and increased GSSG levels.21 GSH homeostasis is nega-
tively affected by a decline in GSH anabolism, resulting
from a reduced uptake43 and increased efflux44 of amino
acid precursors (glutamate, glutamate-precursor gluta-
mine, glycine, and cysteine), secondary to a storage-
dependent decrease in ATP concentrations.43

Reactive oxygen species (ROS) in the form of hydroxyl
radicals and superoxide are generated through Haber
Weiss and Fenton reactions from heme iron.45 ROS tend to
reach a maximum within the first 2 weeks of storage, both
in leukofiltered and in nonleukofiltered units (though to a
lesser extent in the former).8,26,46,47

THE PROGRESSIVE LOSS OF METABOLIC
MODULATION IS ATTRIBUTABLE TO

LESIONS TARGETING BAND 3

The Anion Exchanger 1 (AE1; Band 3) is the most abun-
dant RBC membrane protein (approx. 1 × 106 copies/

cell). AE1 lies at the crossroads between anion
homeostasis, gas transport, and metabolic modulation.7

The main role of this protein is to promote the so-called
“chloride shift,” a process resulting in the exchange of
cellular HCO3

– with plasma Cl–. In so doing, AE1 partici-
pates with carbonic anhydrase to modulate gas transport
(O2 release and CO2 uptake). By favoring the conversion
of the weak acid H2CO3 to the strong acid HCl, AE1 con-
tributes to the acidification of the intracellular pH. The
transient acidification triggered by AE1 activity boosts O2

release from Hb (Bohr effect) and oxygen supply to those
tissues producing more CO2 (lactate-rich acidic districts).
However, AE1 is not only tied to gas transport homeosta-
sis, since its N-terminal cytosolic domain provides a
docking site for a series of structural proteins and glyco-
lytic enzymes (e.g., phosphofructokinase, aldolase, glyc-
eraldehyde 3-phosphate and lactate dehydrogenases;
Fig. 3A).48,49 These interactions result in the assembly of a
multiprotein complex often referred to as the “respira-
tory metabolon.” Biochemical studies have highlighted a
role for the negatively charged residues at the N-terminal
cytosolic domain in mediating enzyme-AE1 interactions.
These interactions are further promoted by phosphory-
lation of tyrosine 8 and 21.50 Negative charges in this
region also serve to stabilize deoxyhemoglobin,49 whose
binding to AE1 triggers the release and thus reactiva-
tion of otherwise bound-inhibited glycolytic enzymes
(Fig. 4), providing an oxygen-dependent metabolic
modulation.49

AE1 is also involved in redox homeostasis, as it
also interacts with peroxiredoxin 2,51 a scavenger of

Fig. 3. Band 3 and the transport metabolon. In A, glycolytic and structural enzymes on the CDB3 and the relative binding sites (red

bold font). In B, amino acid sequence targeted by ROS (red bold font), caspase (blue bold font), and μ-calpain (green bold font)

during storage in the blood bank (literature-based or in silico prediction via GPS-CCD—http://ccd.biocuckoo.org/down.php).

AN OMICS UPDATE ON RBC STORAGE

Volume 55, January 2015 TRANSFUSION 209



low-level hydrogen peroxide.52 Progressive transloca-
tion of peroxiredoxin 2 to the RBC membrane during
storage in the blood bank has been documented,52 both
in leuko- or in nonleukoreduced units,8,26,53 and pro-
posed to be a biomarker of autologous blood transfu-
sions as illicit doping practices for endurance sport
athletes.17

Clustering of the extracellular regions of AE1 might
contribute to the removal of transfused RBCs from the
bloodstream of the recipient, by stimulating binding of
Band 3 antibodies and removal by the spleen and liver
macrophages.54 Additionally, alterations to the oligomeric
state of AE1 have been reported to precede membrane
phospholipid loss during storage of RBCs in the blood
bank.55 Oligomerization of AE1 might be promoted by oxi-
dative stress, since oxidized and poorly glycosylated AE1 is
selectively phosphorylated by Syk kinase, which in turn
promotes the formation of large membrane clusters
in normal and glucose-6-phosphate dehydrogenase–
deficient RBCs.50

Finally, AE1 is targeted by intracellular proteases
(such as caspases) and ROS, which results in the genera-
tion of distinct fragments of AE1 (24 and 35 kDa,
respectively; Fig. 3B).56 Of note, caspase-3 activation is
consistent with the storage-dependent triggering of a Fas/
caspase-driven death program.57

OXIDATIVE DAMAGE TO PROTEINS:
FRAGMENTATIONS, CARBONYLATIONS,

AND NONENZYMATIC GLYCATION

Storage-dependent oxidation of proteins results in at
least three main documented events: 1) increased
protein fragmentation, membrane migration, or
externalization;8,46,47,58-62 2) increased protein
carbonylation;8,61-64 and 3) increased (non-)enzymatic
glycosylation of cytosolic65 and membrane proteins.66

Alterations to RBC cytosolic and membrane proteins
during storage have been extensively documented
through proteomics technologies,8,46,58-62 and include: 1)
the fragmentation of structural proteins (spectrin,
ankyrin, AE1, and Band 4.1 and 4.2—triggered by either
proteases or ROS); 2) membrane accumulation of Hb,
antioxidant enzymes (peroxiredoxin 2), and chaperones;
and 3) cytosolic decrease of transglutaminase-2, β-actin,
and copper chaperone for superoxide dismutase.8,46,57-62

Remodeling of the cytoskeleton has been appreciated
through the observed relocation of vesicle-associated
membrane fusion proteins (SNAPs)8 and the decrease in
RBC membrane content of lipid raft-associated proteins
flotillins and stomatin.60 Stored RBCs also tend to
exocytose the otherwise functional proteasome,67 which
is likely indicative of an impaired capacity of the

Fig. 4. Oxygen-dependent metabolic modulation by Band 3 and storage lesions. Oxygen-dependent metabolic modulation is medi-

ated by the competitive binding of deoxyhemoglobin and glycolytic enzymes phosphofructokinase (PFK), aldolase (ALDOA), and

glyceralhdehyde-3-phosphate dehydrogenase (GAPDH) to the cytosolic domain of Band 3 (CDB3). In A, enzymes are bound and

inhibited (high oxygen saturation and/or oxidative stress). This mechanism promotes a metabolic shift from glycolysis to the PPP.

In B, deoxyhemoglobin binding to the CDB3 releases glycolytic enzymes and promotes glycolysis (low oxygen saturation). In C,

fragmentation of the CDB3 is triggered by the activation of caspases, calpain, and ROS. Fragmentation of CDB3 results in the

impairment of the oxygen-dependent metabolic modulation of RBCs. Enzymes are shown in red (A—inhibited), green (B—active),

or orange (C—enzyme activity potentially influenced by storage lesions).
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ubiquitination system in older RBCs,68 thus limiting the
removal of irreversibly damaged proteins.

Aging of RBCs, both in vivo and in vitro, also promotes
a conformational change to CD47, a “do not eat me” signal
for RBC phagocytosis as it interacts with the inhibitory
immunoreceptor SIRPα expressed by macrophages.69

Senescent and long-stored RBCs display CD47 that has
undergone a conformational change that triggers its
binding to thrombospondin-1. This promotes RBC phago-
cytosis by human red pulp macrophages and is thus asso-
ciated with a shortened survival of transfused older
RBCs.69

Carbonylation of RBC proteins, a hallmark of oxida-
tive lesions, increases until the fourth week of storage8,61,64

(especially in nonleukoreduced units)26 and then
decreases by the end of the storage period. The decrease is
due either to proteasome activity or vesiculation,63,70 two
likely self-protective and/or age-dependent mechanisms
that will be further discussed below.

ROS-mediated nonenzymatic glycosylation of pro-
teins (i.e., glycation) has been reported to target the most
abundant cytosolic (i.e., Hb α and β-chains)65 and mem-
brane proteins.66 Such phenomena might be exacerbated
by the excessive glucose found in anticoagulation and
additive solutions (ASs). Indeed, by the end of the storage
period, glucose levels in the supernatants of CPD-SAGM–
stored RBCs are approximately 12 ± 1 mmol/L,41 which is
still higher than circulating glucose in diabetic patients
(subjects with a consistent glycemia above 7 mmol/L are
generally deemed to be diabetic).71 Increased rates of
enzymatic glycosylation of RBC membrane proteins is a
potentially adverse event,66 as membrane-associated car-
bohydrate structures contribute to alter rheologic proper-
ties and the proimmunogenic potential of transfused
RBCs.

OXIDATIVE STRESS TO LIPIDS

Aging of RBCs results in the progressive accumulation
of oxidative stress markers in the lipid fraction (in the
form of malondialdehyde8,72 or prostaglandins, such as
8-isoprostane).21 Again, a factor contributing to lipid
peroxidation might be represented by the elevated glucose
loading in collection and storage solutions, which fuels
glucose autoxidation.73 Accumulation of high levels of
prostaglandins or oxidized lipids in the supernatants of
long-stored RBCs are likely to promote adverse events
(e.g., transfusion-related acute lung injury) or inflamma-
tory responses in the recipients.74,75

Like the proteome, the RBC lipidome is diet (and thus
donor) dependent and subject to stability, in that mature
RBCs are devoid of de novo long-chain fatty acid synthesis
enzymes.76 In this view, alterations to the lipidome are
regarded to be irreversible. One of the earliest observed
alterations to the RBC lipidome during storage in the

blood bank is the progressive increase in membrane phos-
pholipid asymmetry, owing to consumption of ATP reser-
voirs, which results in the apoptosis-like14 externalization
of phosphatidylserine (PS) to the outer leaflet of the
plasma membrane.77

Recent lipidomics studies78,79 indicated that long-
stored RBCs display higher levels of ceramides, which are
released from cell membrane sphingomyelins by an acid
sphingomyelinase.80 The stimulation of sphingomyelinase
is dependent on the platelet (PLT)-activating factor, which
is in turn generated from cell membrane lipids by an
osmotic shrinkage-dependent phospholipase.14

MORPHOLOGIC CHANGES AND
MEMBRANE EXOVESICULATION

Physiologic shape, protein interactions, and surface area-
to-volume ratio jointly determine the biomechanical
properties of circulating RBCs that are critical for their
survival.81 Unlike the in vivo aged RBCs, that progressively
become smaller and more dense,13 storage in the blood
bank is associated with an early and probably reversible
increase in RBC volume.26,82 This phenomenon theoreti-
cally affects cell deformability.82 Visible shape abnormali-
ties appear soon after the first week of storage and occur in
about one-third of the original RBC population by the end
of the storage period.9,26,83 These changes result in loss of
the smooth biconcave disc morphology and acquisition of
altered morphologies, either reversible or irreversible
(echinocytes and stomatocytes or spherocytes).9,83

Reversibility of morphologic alterations is inversely
proportional to storage duration and is dependent on
membrane–cytoskeletal interactions.84 These in turn are
modulated by cellular metabolism, ATP levels, and cation
homeostasis. Morphologic variation seems to be closely
associated with storage-related disturbances in cellular
deformability,85 osmotic fragility,9 mechanical fragility,86

and rheologic properties.83,87 To some extent, morphologic
lesions can be prevented by leukoreduction88 or reversed
by rejuvenation.86

Irreversible morphologic alterations are those involv-
ing loss of significant portions of the RBC membrane
through exovesiculation. Microvesicles are released from
the tips of the echinocytic spines of RBCs transformed
beyond the early spheroechinocyte stage.89 Microvesicles
are a measure of RBC damage during storage as well as a
potential source of mediators that lead to adverse
posttransfusion effects. In extreme spherocytosis, the loss
of all extra surface implies critically compromised cell
surface-to-volume ratio and deformability, which aggra-
vate both in-bag hemolysis and posttransfusion
recovery.90

RBC-shed microparticles have also been considered
as biomarkers of storage quality. Indeed, they are impor-
tant carriers of extracellular Hb60,62,91,92 and can contribute

AN OMICS UPDATE ON RBC STORAGE

Volume 55, January 2015 TRANSFUSION 211



to immunogenic, proinflammatory, procoagulant, throm-
bogenic, and NO scavenging activities.93-98 Vesicles
shed from apoptotic RBCs are characterized by PS
externalization.99

The rate of RBC vesiculation increases after the second
week of storage.62 Interestingly, not only the extent but also
the nature of RBC vesiculation mechanisms may vary with
storage time,60 in terms of size, structure,62 protein
composition,60,62,85,99-103 or PS exposure.85 In addition,
microvesiculation exhibits dependence on RBC age,66 as
well as on manufacturing method and storage settings,
including the presence of ASs, leukoreduction,26,104 and the
plasticizer material used in blood bags.105 In particular,
prestorage leukoreduction reduces the total levels of both
RBC-derived macroparticles and microparticle-mediated
procoagulant and inflammatory markers.96,98,101

Mass spectrometry–based proteomics studies of RBC
membrane and vesicles suggested that vesiculation in vitro
is a different process than vesiculation in vivo.60,102 Indeed,
in vivo vesiculation is suggested to be an integral part of the
cellular homeostasis and physiologic aging process106 for
the efficient disposal of damaged or dangerous RBC com-
ponents.92 However, storage-related disturbances in cellu-
lar metabolism (energy depletion), biomechanical
properties, calcium, ceramide, and PS exposure levels
further exacerbate the formation of microparticles.95,107,108

Immunoblotting,62 flow cytometric,103 and proteomic
analysis60,99-102 suggested that several factors may influ-
ence the vesicles release profile during storage, including
the storage-dependent acceleration of RBC protein break-
down and oxidation, as described.

Clarifying the root causes of RBC vesiculation in vitro
is critical for improvement of current blood component
processing and storage strategies. For example, it has
recently been reported that, in a murine model of trans-
fusion, addition of antioxidants to stored RBCs units
results in a significant decrease in microparticle formation
as well as improved RBC 24-hour posttransfusion recovery
and recipient alloimmunization.109 Additional beneficial
effects might derive from the introduction of filters
designed to remove immunoglobulins, cytokines, and
other bioactive proteins from aged RBC supernatants.110

MICRO RNAS

Micro RNAs (miRNAs) are known to be involved in post-
transcriptional or translational control, which should be
absent in anucleated ribosome-free RBCs. However, when
assaying 52 miRNAs in stored RBCs, Kannan and Atreya111

detected a significant alteration in the levels of miR-96,
miR-150, miR-196a, and miR-197, which increased during
the first 20 days of storage and decreased thereafter. These
miRNAs might derive from residual white blood cells
(WBCs) and PLTs in the unit. Indeed, modern prestorage
leuko- and PLT-reduction filters only remove 3 to 3.5 and

approximately 2 logs of WBCs and PLTs, respectively.112

Nucleated WBCs and PLTs contain machinery to process
pre-miRNAs into mature miRNAs, and specific PLT
miRNA levels have been found to correlate with PLT reac-
tivity.113 Functional studies in the future will determine
whether and to what extent miRNAs accumulating over
storage might affect transfusion recipients.

POSTTRANSLATIONAL MODIFICATIONS

Although hitherto underinvestigated, protein posttransla-
tional modifications might represent a key biologic
mediator of molecular signaling events triggered by
storage-dependent variables. For example, kinases such
as AMPK and PKC might be activated by ATP consumption
and intracellular calcium accumulation, and thus mediate
downstream signaling. Phosphorylation of downstream
targets might thus affect enzyme activities or the stability
of structural proteins. Of significance, control of the RBC
shape and membrane dynamics are both consequences of
dynamic cytoskeleton alterations at spectrin junctions, a
process requiring ATP hydrolysis.114 This local remodeling
of the membrane is likely related to ATP-driven phos-
phorylation of specific structural proteins, a reoccurring
theme in the regulation of membrane stability. Indeed,
coupling between the phospholipid bilayer and the
spectrin-actin network governs the deformability of RBCs
through complex protein–protein interactions that are
modulated by phosphorylation.115,116 Interestingly, recent
studies have documented changes in the phosphorylation
status of membrane proteins in sickle RBCs117-119 and asso-
ciated these events to morphology-related abnormalities
typical of diseased RBCs. Similar studies on stored RBCs
are still missing, although one of the hallmarks of storage
lesions is the irreversible alteration of the shape pheno-
type, which is mediated by membrane perturbations and
cytoskeleton dysfunctions, as discussed. By means of
phosphoproteomics technologies, we recently observed a
storage duration–dependent increase in the Ser/Thr phos-
phorylation status of some crucial RBC membrane pro-
teins (e.g., AE1, spectrin, ankyrin, Band 4.1, and
adducin).120 In line with available models of the RBC
membrane organization, these preliminary data confirm a
pivotal role in the regulation of membrane mechanics and
RBC surface remodeling of the 4.1R macrocomplex and
the adducin-to-cytoskeleton bridged complex, which
contains the membrane-spanning proteins AE1 and
glycophorin C. The reduced survival of transfused RBCs
might thus be attributable, in part, to deformability-linked
phosphorylation events.120

Other posttranslational modifications, such as the
above-discussed (non-)enzymatic glycosylation might
also be deleterious to RBC function. For example,
advanced glycation endproducts of proteins from stored
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RBCs increase endothelial ROS generation through the
interaction with the receptor for advanced glycation end
products in the recipient.121

DONOR VARIABILITY AND
PREANALYTICAL ISSUES

Sample heterogeneity is a critical issue in omics studies.42

Variability in donated units arises from biologic (donor)
and technical factors, also referred to as preanalytical
issues.122 These variables complicate in vitro studies of
RBC storage, limit RBC storage system development, and
confound studies aimed at determining the impact of
storage lesions on transfusion outcomes.123

Variability in RBC storage characteristics among
healthy donors is a long-recognized phenomenon that
goes by the name of “storability.” Storability has been a
major unsolved problem throughout the history of blood
banking. The variability issue was first recognized in the
1960s by Dern and colleagues124 and remains a concern in
modern storage strategies. Indeed, under the same condi-
tions, different blood donors have markedly different RBC
pre- and posttransfusion capacities. Unknown donor-
related factors not only affect a range of physiologic prop-
erties of stored cells, but they have also been shown to
represent the most significant contributing factors influ-
encing in-bag hemolysis and RBC recovery.91,124-126 A major
factor affecting these variables is the donor-dependent
RBC capacity to cope with oxidative injury, as gleaned
through recent investigations on poststorage viability
either in inbred mouse strains or small groups of
humans.125 Several RBC storage–dependent physiologic
variables have been found to display donor dependence
as well, including leukoreduction-associated hemolysis,26

RBC age upon donation,17,127 metabolic rate and metabo-
lite concentrations (e.g., ATP),128 fragility profiles,129 mem-
brane vesiculation degree,26 susceptibility to oxidative
stress,53,130 and many more clinically significant properties
of stored RBCs (such as vascular effects observed in the
recipients).131 Moreover, storage lesions appear to be
dependent on donor sex, age, and smoking habit132-134 and
can be influenced by the genetic background of the donor.
The genetic background either implies β-thalassemia
traits, glucose-6-phosphate dehydrogenase deficiency,135

intrinsic variation in RBC HbA1c,136 or PS-exposure
levels.137

Within this framework, the currently ongoing Recipi-
ent Epidemiology and Donor Evaluation Study (REDS)-III
has been designed to test whether genetic characteristics
of the donors underlie the interdonor variability observed
in storage-related hemolysis.138 Identifying the critical
factors influencing storability may ease the assessment of
donated blood quality and help tailor manufacturing
strategies that could cope with the variability issue.

Other than donor variability, preanalytical issues122

and processing strategies (leukofiltration, pathogen inac-
tivation, ASs, rejuvenation, etc.)139 influence the pheno-
type of RBCs. Examples of variability include supernatant
K+ levels and hemolysis,140 inflammatory response media-
tors,141 oxygen transport,142 PS exposure,137 eicosanoid
mediators,125 and the amount and composition of
microparticles in the supernatant.143 These variables are
often a function of specific storage settings and manufac-
turing strategies.139 Leukofiltration and ASs significantly
alter biochemical profiles of RBC units, as gleaned
through omics investigations.8,26,101 Affected variables
include the rate and extent of hemolysis, erythrophagocy-
tosis, vesiculation, and oxidative stress management of
the cells.123,132,138,140 Finally, overnight hold of whole blood
at room temperature before component processing
affects several in vitro measures (ATP, 2,3-DPG, hemoly-
sis)144 and membrane properties (osmotic resilience,
vesiculation).145

CONCLUSION

Transfusion of RBCs still represents one of the most valu-
able life-saving treatments in many areas of modern
medicine. Despite controversial retrospective clinical
studies, prospective evidence recommending against the
use of RBC units stored longer than 2 weeks as an issuable
blood-derived therapeutics is still missing or inconclusive.
On the other hand, an accumulating body of evidence
from biochemical, morphologic, and omics investigations
suggests that RBCs stored longer than 14 days are charac-
terized by the accumulation of a series of lesions that
make them qualitatively different from fresh RBCs. As of
now, it is unclear whether and to what extent these lesions
might end up compromising the safety and effectiveness
of the transfusion therapy.

However, the hereby reviewed literature can help
pave the way for the development of alternative storage
strategies aimed at abrogating the potential risk factors
associated with the transfusion of older units. In this view,
omics technologies can guide the development and
testing of currently available or future alternatives to
routine storage. Examples include, but are not limited to,
the introduction and optimization of alternative storage
strategies (cryostorage146,147 or deoxygenation148,149) or
(additive-rejuvenation150) solutions, such as those envis-
aging the implementation of alkaline pH151 or antioxi-
dants109,152 in the storage unit. Additionally, future
biochemical and omics studies should be applied to
emerging technologies in the field of transfusion medi-
cine, such as stem cell–derived ex vivo generated RBCs.153
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