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Abstract.  The target of this paper is to present an Affine Geometry point of 
view for the statistical invariance, applicable to the logit model. A number 
of properties are introduced for the logit model which, for certain p -
values, are equivalent to the probit model. 

1 Introduction 

There are cases where the multiple logit model needs a 
transformation, in order for the experiment design problem to be 
faced in practice, see [9] among others. In those cases, it has been 
proved in [18] that an affine transformation is actually needed when 
the canonical form of a logit model is investigated. Moreover, an 
affine transformation can act through experimentation and can 
preserve statistical invariance for a number of transformations. 

In this paper we extend the affine transformation to the multiple logit 
model. The well-known relation of the (simple linear) logit with the 
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probit model is employed to introduce invariance through an affine 
transformation. This group of transformations is defined for the logit 
model and can act to the probit model due to the equivalence of the 
logit and probit model when [0.2,  0.8]p∈ . In Section 2, we discuss 
the distance and other useful geometrical ideas, which are the main 
line of thought in a number of statistical problems. 

The affine transformations point of view is briefly discussed, under 
the logit model, in Section 3. In Section 4, the probit and logit model 
are applied in a biometrical problem concerning breast cancer. 

 

2 Geometrical Insight 

In principle, there are statistical approaches, both in design theory 
and estimation, with a strong mathematical insight. There also cases 
where, despite the fact that the developed procedure “works well”, 
there is lack of theoretical insight. This paper is based on these cases: 
It tries to offer a strong mathematical background for the proposed 
method. 

Through the usual Euclidean distance, i.e. ( , )d x y =  
2

1( ) ,  , R , n n
i i ix y x y= − ∈Σ  there are a number of other distance 

measures, such that 

 
( , )

1( , ) ,   R1 ,,d x y nd x y e x y∈−=   or 
 

{ }2 ( , ) min | |,   1,..., ,   ( ), ( ) .R n
i i i id x y x y i n x x y y= − = = = ∈  

 
Example 1. The idea of the Euclidean distance is acting in statistical 
theory, not only in estimation; see the pioneering paper by Blyth, [5]. 
Recall the Latin Square of order N :k∈  By definition, it is a Nk∈  
array in which each of the k  symbols (usually Latin letters) occurs 
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once in each row and once in each column. It can be proved that for 

2m ≥ , the m m×  array is defined by 

 
( , ) ,   , ZmL i j i j i j= + ∈ , 

 
with m  being the set of integers modulo m , is a Latin Square. 

For a k k×  Latin Square, recall the main part of an ANOVA Table 
when the Analysis of Variance (or Regression Analysis) is adopted, 
see [8] among others: 

 
Source of Variation df  SS 

Rows 1k −  
2

jy y−
  

 

Columns 1k −  2
ly y−
 

 

Treatment 1k −  2
iy y−
 

 

Error 2
iy y−
 

 by subtraction 

Total 2 1k −  
2y y−



 

df: degrees of freedom, SS: sum of squares 
Table 1.1: ANOVA (main part). 

 
In fact, the sum of squares offers a very illustrating example of the 
extension of the Pythagorean Theorem. 

Topology is a more “primitive” concept than the one of distance. The 
topology introduced by ( , )d x y  on R n  is the same with that of 

1( , )d x y , 2 ( , )d x y , i.e. the topology, in general, is not dependent on 
the form of the defined distance on R n . 

Example 2. Recall that, in binary problems as in [22], the relative 
risk is actually working as a 1( , )d x y  distance. 
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Now, the idea is to think of a set of points, say S , locally resembling 
R n . This is behind when we say that the set S  is a manifold:  

(i) each point of which, say P, can have an open neighborhood,     

(ii) which has a continuous 1-1 and onto map, say f, of an open 
set of R n  (for some n). 

We emphasize that the map f needs to be 1-1; it is not required for 
the lengths or the angles to be preserved, but it only states that 

( ) R nf U ⊆  for the manifold M. The pair ( , )U f  is known as a chart. 
So, we only express a practical need: to present the set S  “like” R n , 
in terms of a co-ordinate chart mapping. For any P of S  we define 
( , )U f  and ( )f P  is considered with coordinates 
( )1 2( ), ( , , () )nP x P xx P… , see [19]. 

Given two charts ( , )U f , ( , )V g  and ( , )V g  then: R: Rn ng f →  
with 

 
1 2 1 2 1( ) ( ),  , , , , , , , , , . ( ),   1,n n i i nx x y y y x nx y y x i… … == … …   

   
 

Example 3. An affine space L in 2R  is defined by the mean value of 
two elements 1 2,x x . Any two points such that 1 2 2x x x+ =  or 

2 12x x x= −  define the line 1L . If we add a constant h  to both values 
we are moved to line 2L  as 

 
12 2

1 ([(x ) )]xh h x h+ + = ++ . 
 

Notice that the parallel line to orbit 1L  passing through the origin O  
is a vector space, while 1 2, ,L L … are not see Fig. 2.1. For the orbit 

2L  it holds 2 1 1const.L L L+ ×= . 
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Figure 2.1: 0L  is a vector space, 1L  represents 12 2

1 (x ) xx+ = , 2L  
represents 1 3 2L h+ . 

 
An orbit is defined from the so called “group of transformations”, 
say G discussed in Section 3, and the affine character described 
above is discussed by Fraser in [7], while for the Logit model see 
Kitsos (2006, 2011). 

 

3 Invariant Statistical Applications 

Statistical invariance has attracted a lot of interest in bibliography; 
see the pioneering book by Lehman [20]. Among the statistical 
applications with no mathematical justification, there is a very 
important one. Haines et al. in [9] consider the logistic dose response 
model for the proportion of “successes” p : 

 
0 1 1 2 2 1 2, 0logit( .) ,p x x xxβ β β+ ≥= +  

 
This application is one of the few considering an extension of the 
simple logit model. To deal with the difficulties of the chosen model, 
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see [9], they simply replaced ,   1,2i i idβ =  with ,   1,2i iz =  and they 
came across known results, evaluating the Fisher’s information, 

 

TI( )θ = vv , with 
1 2T

T

exp(
1 exp

)
)(

θ
θ

 
 + 

=
zv z

z
, (1) 

 
and 0 1 2( ,1,1),  (1, , )z zβ= =θ z . The relation (1) is in line with the 
theoretical assumption: for the logit and probit model, there is always 
a vector w such that T( ,I )θ = ww  see [16]. The transformation of the 
vector β to vector θ  and 1 2,(1, )x x=x  to 1 2,(1, )z z=z  has been the 
idea to work with. Here are the main steps. For the logit 
transformation of the proportion of successes ( )p x , considered as a 
function of the input vector x , of the form 

 

1 1 2
( )log +

1 ( )
,p p

p xy x e
p x

xβ β β σ
 

= = + + 
− 

…+  (2) 

 
~ (0,1)e  , the group (under matrix multiplication) of the affine 

transformations G is formed as, Kitsos (2011), 

 

T
1

1 2

1 0 0 0
0 1 0 0

,   
0 1

R
0 0

p p

p

G g g
σ

β β β σ

+

  
  
      

…
…

∈
…

= = =  
    
    …  

I O
β

     , (3) 

 
 

where we denote 
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diag(1, ),1 R p p
p

×= … ∈I  and (0, ,0) ,  R R p σ += … ∈ ∈O . 
 

It can be proved that 1 1 1:  id.g gg g g− − −∃ = = , with 

 
T

1
1
pg

σ σ
−

−

 
=  
 β

I O
. (4) 

 
We need a transformation of model (2) to move on to a set where 
affine transformations are possible. Therefore (2) can be written 
technically, and this is the key idea, as  

 
1 1

2 2

1 2

1 0 0 0
0 1 0 0

0 0 1 0p p

p

x x
x x

x x
e eβ β β σ

′    
    ′    
    =
    ′    

      

…
…

…

… ′ 

    

  ,  or (5) 

 
gEΨ = , (6) 

 
with  g G∈  and the definition of Ψ and Ε being obvious. Therefore, 
the orbit Gψ  is 

   

1
,   R

p

i i
i

G x eψ β σ σ +

=

 
= ∈
 

+ ∑ .  

 
 

From the affine geometry it is known that for “another model” ω 
(practically another hyperplane), it holds  
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,   or  G G G Gψ ω ψ ω∩ =∅ = . (7) 
 

Hyperplanes Gψ and Gω are either identical or disjoint (we are 
referring to a completely different experimental situation). Notice 
that, as neither 0,   1,2, ,i i pβ ≥ = … , nor 1 1p

ii β= =Σ , the set Gψ 
cannot be considered as an affine simplex, but expands a p-
dimensional hyperplane. 

Under this theoretical framework, the following can be proved, see 
[16]. 

Theorem 3.1. Consider any positive definite matrix M with 
det 0≠M  and a vector c with appropriate dimensions such that 

1: + −=N c M c  is valid. Then N remains invariant if c and M 
transformed under g. 

Corollary 3.1. If ( , )θ ξ=M M  is the average per observation 
information matrix, with ξ  being a design measure, then 

( , )θ ξ=N N  is the transformed form of ( , )θ ξ=M M  Moreover, if 
2p = , the co-optimal design remains invariant under g. 

The above Theorem 3.1 provides evidence that the D-optimal design 
criteria remain invariant under g transformation. Still we need to 
prove that g G∈  can be transformed, so that the parameter 

1 2( , , , )pβ β β= …β  can be 1( ,1,1, , )1β= …θ .  

Theorem 3.2. There is a transformation g G∈  as in (2.3), with 
element 1 2( , , , )pβ β β= …β  with parameter vector equal to 

1( ,1,1, , )1β= …θ . 

Proof. See [16]. 

This result is a fundamental one, see [9], where the transformation 
was used arbitrarily with no further explanation. Moreover, this 
transformation to 1( ,1,1, , )1β= …θ R p∈  provides evidence that there 
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exists always the so-called “canonical form” of the logit model, see 
[6, 14, 16]. Now, as far as the relation between the logit and probit is 
concerned, the following discussion clarifies their equivalence. 
Therefore, the affine transformation in Theorems 3.1 and 3.2 holds 
also for the probit case. Indeed: 

For the “linear predictor” 0 1( )i i ix xη η β β= = + , 1,2 ,,i n= … , 
expressed through the Logistic distribution (and approximated with 
the corresponding Normal distribution), it holds  

0 1

0 1

21
2var ( )1 1 1

2 22 var

)
1

( ) erf ,
2va

(

r

i

i

i

x

i i x

x
u i

i

ex
e

xF

L

x e

p

du

β β

β β

µ

π

µ

+

+

− −

−∞

=
+

 
≈ = +

=

= 


−



∫
 

where L  is the cumulative distribution function (c.d.f.) of the 
Logistic distribution ( , )µ σ  with mean 0 1µ β β= − , scale 
parameter 1

1σ β −=  or variance 2 2 2
1

1 1
3 3( )τ πσ π β −= = , F is the c.d.f. 

of the Normal distribution ( , )µ τ , i.e. with same mean and 
variance as the Logistic distribution, and erf(.)  being the known 
error function. Therefore, the relation between the logit and probit 
model is given by 

 

1
0

1

1 1

1) log
1

( ) 2var er .1f (2

(

)

i
i i

i

i i

px p
p

F p p

L β
β

µ

−

− −

 
 
 

−

≈ = + −

= =
−  

 
Equivalently, using the Probit and Logit functions, we get 
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( ) [ ]

( )
0

1

1
var

1Logit Logit( )

( ) Probit Probit( ).

i

i

p
i i

p
i i

x p

F p p

µ
σ

µ

β
β

µ τ

−

−−

= = −

≈ = = +
 (8) 

 
Figure 3.1 explains the number, as well as the kind of 
transformations involved in binary response data sets, to be 
approached by the canonical form. The flow chart of the procedure is 
the following:  

(1) Data    (2) Probability Model    (3) Logit    
  (4) Regression Estimates ⇔  (5) Affine Model   
  (6) Estimates (through the Affine Transformation)   
  (7) Canonical Form of Logit ⇔   
⇔  Probit when [0.2,  0.8]p∈    Return to ,  x β    (2).  
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Figure 2.1: The transformation to Canonical Form of the Logit 
model. 
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4 Breast Cancer Application 

Consider the data set and analysis discussed in [15] for the breast 
cancer problem. Table 4.1 and 4.2 summarizes, for the specific data 
set, the analysis of the one variable logit model, considering the 
binary response y , and the corresponding input variables, as 
appeared in the following Tables. 

 

Variables β se(β) exp(β) 
Time ( 1β ) -0.9925 0.4805 0.3707 
Constant ( 0β ) -0.1542 0.2782  

Table 4.1: The contribution of “Time”. 

 
Variables β se(β) exp(β) 
Start ( 1β ) -1.4016 0.4204 4.0615 
Constant ( 0β ) -0.7885 0.2412  

Table 4.2: The contribution of “Start”. 

 

Applying (3) for the case of Table 4.1, the affine transformation G 
acts on vector T(1, ', ')E x e=  obtaining vector T(1, , )x eΨ = , i.e. 

 
1 1 0 1

0 1
0.9

0
0

0.15 92542
x x
e eσ

    
    ′ =    
    −  ′  − 

,  i.e.  

0.1542 0.9925y ex σ− ′= − + ′ .  
 

Recall that the Logit and Probit functions are defined as the quantile 
functions 1−Λ  and 1−Φ  of the standardized Logistic (0,1)  and 
Normal (0,1)  distribution, i.e. Logit( ) :p = 1( )p−Λ =  
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log{ (1 )}p p− , and Probit( ) :p = 1( )p−Φ = 12 erf ( 12 )p− − , 

[0,  1]p∈ . 

In Table 4.3 the logit values 1( )k kx L p−=  for 10 [0,  1]kp k ∈= , 
1,2 ,9,k = …  are presented where 1 1( )pL L− −=  is the quantile 

function of the Logistic distribution ( , ) ( 0.1554,1.0076)µ σ = −   
for the random variable (r.v.) X describing “Time”, i.e. with mean 

0 1 0.1554Xµ µ β β− ===  and scale parameter 1
1σ β −= − = 1.0076.  

We work with the estimates 0β  and 1β  from Table 4.1. For the 
variance 2

Xσ , recall that 3
2 21 ( ) 3.3398Xσ πσ= = .  

Table 4.3 also provides the probit values 1( )k kz F p−= , with 
[0,1]kp ∈  as above. We consider 1 1( )F F p− −=  as the quantile 

function of the usual Normal distribution *2( 0.1554, )σ−  of the 
same mean variance as the Logistic one. Thus, we let r.v. 

*2( 0.1554, )~Z σ−  with scale parameter *2σ  such that the 
variances of X  and Z  being equal, i.e. 2 2 3.3398Z Xσ σ= = . 
Therefore, using the Probit(.)  notation, it holds 

 

[ ]0
1

*2

1 Logit( )

Probit( ) Probit( ), 1,2, ,9.k

k k

p
k k

x p

p kz
γ

µ
σ

β
β

µ σ− = + ==

= −

≈ …
 

 
ip  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

kx  -2.369 -1.552 -1.009 -0.564 -0.155 0.253 0.698 1.241 2.058 

kz  -2.497 -1.693    -1.114    -0.618    -0.155    0.308    0.803     2.187     2.187     

Table 4.3: Logit values 1( )k kx L p−= , and probit values 1( )k kz F p−=  
for the contribution of “Time”.  

 
Recall that the mean absolute relative error, or MARE (%), between 
logit and probit values, is defined as  
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9

100
9

1
MARE , 1,2, ,9k k

k k

x z k
x=

= =
−

…∑ , 

  
For the r.v. “Time” it has been evaluated MARE = 9.85% which is 
fairly good, while for the r.v. “Start” the corresponding MARE = 
27.2%. 

Table 4.4 present the logit/probit estimations for the r.v. describing 
“Start” where the corresponding estimates are in Table 4.2.  

 
ip  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

kx  -2.130 -1.552 -1.167    -0.852 -0.563    -0.273    0.042    0.426     1.005     

kz  -2.221    -1.652    -1.241    -0.890    -0.563    -0.235    0.116    0.527     1.096     

Table 4.3: Logit values 1( )k kx L p−= , and probit values 1( )k kz F p−=  
for the contribution of “Start”.  

Finally, the fact that the probit model provides a “good” fitting for 
the logit model of “Time” and “Start” is also supported by the higher 

2R  coefficient, given by,  

 

   

9
2

2 1
9

2

1

(
1

)

)(

k k
k

k k
k

x z
R

x x

=

=

−
=

−
−
∑

∑
, 

  
which measures the goodness-of-fit between the logit kx  and the 
probit kz  values. For random variables “Time” and “Start” we obtain 
both 2 2

Time Start 0.9935R R= = , i.e. very close to 1. 

In this paper we discussed the invariance of a group of 
transformations for the logit and probit model. The empirical 
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estimations validate the theoretical background. The above 
discussion may be extended, through a generalized form of the 
common probit function, which is part of our future work.  
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