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A two-unit parallel system supported by (n� 2) standbys

with general and non-identical lifetimes

EFFIE PAPAGEORGIOUy* and GEORGE KOKOLAKISy

This paper examines a functioning policy of a parallel system. We assume availability
of n non-identical, non-repairable units for replacement or support. Two units start
their operation simultaneously at times S1 ¼ S2 ¼ 0; and any one of them is replaced
instantaneously upon its failure by one of the (n� 2) standby units at random starting
times Si (i ¼ 3, . . . , n). Thus, with probability one, the system is functioning with two
units up till the failure of the (n� 1)th unit. Unit lifetimes Ti ði ¼ 1, . . . , nÞ have a gen-
eral joint distribution function F(t). The system has to operate for a fixed period of
time, c, and it stops functioning when all available units fail before c. The probability
that the system is functioning for the required period of time c depends on the distri-
bution of the unit lifetimes. The reliability of the system is evaluated by recursive
relations. Independent unit lifetimes are considered as special cases.

1. Introduction

Repairable two-unit redundant systems have attracted
the attention of several researchers working in the field
of reliability theory. Many workers, including Murari
and Goel (1984), Gupta and Goel (1989), Goel et al.
(1992), and Gupta and Chaudhary (1992), have investi-
gated the two-unit standby system models assuming
that, on the failure of one unit, it is replaced by the
standby unit instantaneously. Gupta and Kishan
(1999) consider situations of a two-unit system where
the standby unit does not operate instantaneously, but
a fixed preparation time is required to put standby and
repaired units into operation. Several workers including
Gopalan et al. (1986), Gupta and Goel (1990), and
Murari and Maruthachalam (1981) have analysed
two-unit system models under a variety of assumptions
using the regenerative point technique. In all these
system models, it is assumed that the lifetimes are
uncorrelated random variables. Gupta et al. (1999)
have investigated a two non-identical parallel system
with correlated lifetimes and independently distributed
repair times. In these models, the repair time may be

fixed or random and with or without administrative
delay.

Other workers studied the age replacement policy,
i.e. the unit is replaced at its failure or at pre-assigned
age T, whichever comes first, assuming that a spare for
replacement is always available. Nakagawa and Osaki
(1974) extended the age-replacement model by consider-
ing that the spare for replacement may not always
be available in practice. Osaki and Yamada (1976)
discussed an age replacement policy with random deliv-
ery time and costs for stock and system downtime.
Jhang (2001) considered an extension of the model
studied by Osaki and Yamada (1976) by introducing
age-dependent minimal repair and general random
repair cost.

In all these parallel system models, it is assumed that
the system failure occurs only when both units stop
functioning, but it is not necessary for both units to
work simultaneously. The structure of these system
models allows the operation of only one unit during
the repair time of the other. The main difference of the
model we examine in this paper is that we have available
a fixed number of n non-repairable and non-identical
units with non-independent lifetimes with general
distributions. Two units operate simultaneously until,
at least, the entrance of the last standby unit. The two-
unit parallel system is up as long as there is at least one
working unit. Our main result is the determination of the
reliability of the system by using probabilistic analysis.
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We have to emphasize here that our basic results refer
to non-independent unit lifetimes with general distribu-
tions, unlike most earlier results which refer to specific
unit lifetime distributions.
In Kokolakis et al. (1996), a similar n-unit, non-

repairable redundant parallel system is considered.
The units start at prescheduled times and up to n units
may be working simultaneously. The system reliability
is derived for independent lifetimes with general
distributions, and its optimization with respect to
the unit prescheduled starting times is investigated.
Comparison with this policy is presented in Section 5.1.

1.1. Nomenclature

Ui the ith unit introduced into the system,

Ti lifetime of ith unit,

fið�Þ, Fið�Þ PDF and CDF of the ith unit lifetime,

f ðtÞ,FðtÞ joint PDF and CDF of unit lifetimes,

Rð�Þ reliability function,

Si starting time of operation of the ith unit,

n number of available and non-repairable

units,

N number of units used,

T system lifetime,

c fixed required period of system operation,

S the event fT � cg.

2. System description

The problem of the successful control of a process
by a non-identical unit parallel system is considered in
this paper.
Here, there is available a fixed number of n non-

repairable and non-identical units. The unit lifetimes
Ti (i ¼ 1, . . . , n) are random and not necessarily indepen-
dently distributed with a general joint distribution, F.
The process is considered to have a fixed duration, c.
The control of the process is considered successful pro-
vided that at least one of the units is in operation during
the required period of time, and the process information
required for the control is transferred instantaneously
to a new entering unit from a working one. The process
is initially controlled by two units, and the remaining
(n� 2) units are standbys. The two initial units
start their operation simultaneously, i.e. at times S1 ¼

S2 ¼ 0, and one of these is replaced by a new one
upon its failure, i.e. the third unit starts its operation at
time S3 ¼ minfT1,T2g. Similarly, the fourth unit starts
its operation upon the failure time of one of the two
working units, i.e. at time S4 ¼ minfmaxfT1,T2g,
S3 þ T3g. In general, the ith unit starts its operation
at time Si¼minfmaxfT1,T2,S3þT3, . . . ,Si�2þTi�2g,
Si�1þTi�1g and it works in parallel with that already

introduced and not failed before Si. Thus, the times Si

(i ¼ 3, 4, . . . , n) are random, and the process is simulta-
neously controlled by two working units until, at least,
the entrance of the last available unit. The system
stops functioning when all units fail. The probability
of the successful control of the process until its com-
pletion time, c, depends entirely on the distributions of
unit-lifetimes.

In many realistic situations, the above policy describes
the control of a process by a parallel system. As an
example, we can consider a satellite communication
system which consists of two satellites in orbit and
(n� 2) standbys. If at least one of the two satellites is
functioning in orbit, the system is considered a success,
whereas if no one satellite functions in orbit, the system
is considered a failure. The replenishment policy to keep
the system operating successfully for a required time
period, c, is as follows: Two satellites launch simulta-
neously and function in orbit. If one of them stops oper-
ating successfully in orbit, a new one launches and
replaces it. So until the failure of the (n� 1) available,
there are always two satellites operating in orbit. We
assume that the time required to place a satellite in
orbit after launch is negligible. The required process
information is transferred instantaneously to the new
entering satellite from the working one. It is important
to know the probability that the system is operating
successfully for the required time period, c.

3. Model analysis

Let T be the system lifetime and Ti (i ¼ 1, . . . , n) be
the lifetimes of the units Ui with joint distribution, F.
Let also S be the event of the successful control of
the process during the required period of time c,
i.e. S ¼ fT � cg.

From the description of the policy above, it follows
that the system is functioning non-stop until, at least,
the entrance of the unit Un at time Sn < c. Thus, with
the notation introduced, the problem considered here
is as follows:

Problem: Evaluate the probability of the event S that
the control of the process will be successful until time
t ¼ c. That is, we have to evaluate the probability
P ½S� ¼ P ½T � c�.

To clarify the problem, we evaluate the above
probability for independent lifetimes and with
n ¼ 2, 3, and 4 units.

3.1. Two independent units

For n ¼ 2, we have:

S1 ¼ S2 ¼ 0:
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The system lifetime T ¼ maxfT1,T2g and

P½S� ¼ P½T � c� ¼ P½maxfT1,T2g � c�

¼ 1� P½maxfT1,T2g < c�,

and due to independence

P½S� ¼ 1� P½T1 < c�P½T2 < c�

¼ 1� ð1� P½T1 � c�Þð1� P½T2 � c�Þ:

Thus, with Ri, the reliability function of the ith unit,
we have

P½S� ¼ 1� f1� R1ðcÞgf1� R2ðcÞg: ð1Þ

Figure 1 refers to the case where both units fail before c.

3.2. Three independent units

For n ¼ 3, we have:

S1 ¼ S2 ¼ 0 and S3 ¼ minfT1,T2g:

Thus, T ¼ maxfT1,T2,T3 þ S3g ¼ maxfmaxfT1,T2g,
T3 þ S3g and

P½S� ¼ P½T � c� ¼ P½maxfmaxfT1,T2g,T3 þ S3g � c�

¼ 1� P½maxfmaxfT1,T2g,T3 þ S3g < c�

¼ 1� P½fmaxfT1,T2g < cg � fT3 þ S3 < cg�,

where the symbol ‘ � ’ denotes the intersection of two
events.

The last probability can be written as follows:

P½fmaxfT1,T2g < cg � fT3 þ S3 < cg�

¼ P½fmax fT1,T2g < cg � fT3 þ S3 < cg � fT1 � T2g�

þ P½fmaxfT1,T2g < cg � fT3 þ S3 < cg � fT1 > T2g�

¼ P½fT2 < cg � fT3 þ T1 < cg � fT1 � T2g�

þ P½fT1 < cg � fT3 þ T2 < cg � fT1 > T2g�:

The above two probabilities correspond to figures 2a
and 2b, respectively.

Thus,

P½S� ¼ 1� P½fT2 < cg � fT3 þ T1 < cg � fT1 � T2g�

� P½fT1 < cg � fT3 þ T2 < cg � fT1 > T2g�,

and therefore with independently distributed lifetimes,
we have:

P½S� ¼ 1�

ðc
0

ðc
t1

ðc�t1

0

Y3
i¼1

fiðtiÞ

( )
dt3 dt2 dt1

�

ðc
0

ðt1
0

ðc�t2

0

Y3
i¼1

fiðtiÞ

( )
dt3 dt2 dt1,

ð2Þ

where fi is the PDF of the random variable Ti

(i ¼ 1, 2, 3).

3.3. Four independent units

For n ¼ 4, we have:

S1 ¼ S2 ¼ 0, S3 ¼ minfT1,T2g and

S4 ¼ minfmaxfT1,T2g,T3 þ S3g:

Thus,

T ¼ maxfmaxfmaxfT1,T2g,T3 þ S3g,

T4 þminfmaxfT1,T2g,T3 þ S3gg:

U2

t = c 

U1

t = 0 

Figure 1. Units U1 and U2 starting operation simultaneously

at time t¼0. The process is not sucessfully controlled for the

required time t¼ c.

U
(a) (b)

1

t = c

U3

U2

t = 0 t = c 

U2

U3

t = 0 

U1

Figure 2. Unit U3 starting its operation upon the failure time of (a) the unit U1 and (b) the unit U2. The process is not successfully

controlled for the required time t¼ c.
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Since S4 ¼ minfmaxfT1,T2g,T3 þ S3g, we can write

T ¼ maxfmaxfmaxfT1,T2g,T3 þ S3g,T4 þ S4g;

and therefore,

P½S� ¼ P½T � c�

¼ P½maxfmaxfmaxfT1,T2g,T3 þ S3g,T4 þ S4g � c�

¼ 1� P½maxfmaxfmaxfT1,T2g,T3 þ S3g,T4 þ S4g < c�

¼ 1� P½fmaxfmaxfT1,T2g,T3 þ S3g < cg � fT4 þ S4 < cg�

¼ 1� P½fmaxfmaxfT1,T2g,T3 þ S3g < cg � fT4 þ S4 < cg

� fmaxfT1,T2g � T3 þ S3g�

� P½fmaxfmaxfT1,T2g,T3 þ S3g < cg � fT4 þ S4 < cg

� fmaxfT1,T2g > T3 þ S3g�

¼ 1� P½fT3 þ S3 < cg � fT4 þmaxfT1,T2g < cg

� fmaxfT1,T2g � T3 þ S3g�

� P½fmaxfT1,T2g < cg � fT4 þ T3 þ S3 < cg

� fmaxfT1,T2g > T3 þ S3g�

¼ 1� P½fT3 þ S3 < cg � fT4 þmaxfT1,T2g < cg

� fmaxfT1,T2g � T3 þ S3g � fT1 � T2g�

� P½fT3 þ S3 < cg � fT4 þmaxfT1,T2g < cg

� fmaxfT1,T2g � T3 þ S3g � fT1 > T2g�

� P½fmaxfT1,T2g < cg � fT4 þ T3 þ S3 < cg

� fmaxfT1,T2g > T3 þ S3g � fT1 � T2g�

� P½fmaxfT1,T2g < cg � fT4 þ T3 þ S3 < cg

� fmaxfT1,T2g > T3 þ S3g � fT1 > T2g�:

Since now S3 ¼ minfT1,T2g, we have S3 ¼ T1 when
T1 � T2, and S3 ¼ T2 when T1 > T2.

Thus, we can write alternatively:

P½S� ¼ 1� P½fT3 þ T1 < cg � fT4 þ T2 < cg � fT2 � T3 þ T1g

� fT1 � T2g�

� P½fT3 þ T2 < cg � fT4 þ T1 < cg � fT1 � T3 þ T2g

� fT1 > T2g�

� P½fT2 < cg � fT4 þ T3 þ T1 < cg � fT2 > T3 þ T1g

� fT1 � T2g�

� P½fT1 < cg � fT4 þ T3 þ T2 < cg � fT1 > T3 þ T2g

� fT1 > T2g�:

ð3Þ

Figures 3a–d refer to the four terms above, respectively.

Now, by solving the inequalities within each term above,
we get the area of integration of the joint distribution
function of the unit lifetimes. Thus, with independently
distributed lifetimes, we take:

P½S� ¼ 1�

ðc
0

ðc
t1

ðc�t1

t2�t1

ðc�t2

0

Y4
i¼1

fiðtiÞ

( )
dt4 dt3 dt2 dt1

�

ðc
0

ðt1
0

ðc�t2

t1�t2

ðc�t1

0

Y4
i¼1

fiðtiÞ

( )
dt4 dt3 dt2 dt1

�

ðc
0

ðc
t1

ðt2�t1

0

ðc�t1�t3

0

Y4
i¼1

fiðtiÞ

( )
dt4 dt3 dt2 dt1

�

ðc
0

ðt1
0

ðt1�t2

0

ðc�t2�t3

0

Y4
i¼1

fiðtiÞ

( )
dt4 dt3 dt2 dt1,

ð4Þ

t = 0

U

(a) (b)

(c) (d)

1

U4

U2

U3

t = c

U4

t = c t = 0

U1

U2

U3

t = c

U2

U4

U3

U1

t = 0
t = c

U1

U2

U3

U4

t = 0

Figure 3. Units U3 and U4 starting operation upon the failure time of (a) U1 and U2, (b) U2 and U1, (c) U1 and U3, and (d) U2 and U3,

respectively. The process is not sucessfully controlled for the required time t¼ c.
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where fi is the PDF of the random variable Ti

(i¼ 1, . . . , 4).

3.4. General case

We will now derive a recursive relation to evaluate
P½S� for any number, n, of non-independent and non-
identically distributed lifetimes.
Here, we have:

S1 ¼ S2 ¼ 0,

S3 ¼ minfT1,T2g,

and in general for i � 4,

Si¼minfmaxfT1,T2,T3þS3,...,Ti�2þSi�2g,Ti�1þSi�1g

ði¼4,..., nÞ:

ð5Þ

Let us define now the following random variables:

M2 ¼ T1,

M3 ¼ maxfT1,T2g,

and in general for i � 4.

Mi ¼max fT1,T2,T3 þS3, . . . ,Ti�1 þSi�1g ði¼ 4, . . . , nÞ,

ð6Þ

which, in order to develop recursive relations, will be
written in the form

Mi ¼ maxfmaxfT1,T2,T3 þ S3, . . . ,Ti�2 þ Si�2g,Ti�1 þ Si�1g

ði ¼ 4, . . . , nÞ:

Then, for the system lifetime, we have

T ¼ maxfT1,T2,T3 þ S3, . . . ,Tn þ Sng:

Let us define also

Vi ¼ Ti þ Si ði ¼ 2, . . . , nÞ: ð7Þ

Thus, we have

S1 ¼ S2 ¼ 0,

Si ¼ minfMi�1,Vi�1g ði ¼ 3, . . . , nÞ

and

Mi ¼ maxfMi�1,Vi�1g ði ¼ 3, . . . , nÞ:

Consider now the following events:

ðiÞ Ai ¼ fMi � Vig ði ¼ 2, . . . , n� 1Þ,

ðiiÞ Bi ¼ fMi < cg ði ¼ 2, . . . , nÞ,

ðiiiÞ Ci ¼ fVi < cg ði ¼ 2, . . . , nÞ,

ðivÞ Di ¼ Bi \ Ci ði ¼ 2, . . . , nÞ,

ðvÞ F i ¼ fTiþ1 þ Vi < cg ði ¼ 2, . . . , n� 1Þ,

ðviÞ Gi ¼ fTiþ1 þMi < cg ði ¼ 2, . . . , n� 1Þ:

ð8Þ

We may notice now that the complement of the event
Dn is the event, S, that is Dn represents the unsuccessful
control of the process by an n-units system for the
required period of time t ¼ c. Indeed, we have:

Dn ¼ Bn \ Cn

¼ fMn < cg � fVn < cg ¼ fmaxfMn,Vng < cg,

and introducing (6) for i ¼ n, we get

Dn ¼ fmaxfT1,T2,T3 þ S3,T4 þ S4, . . . ,Tn þ Sng < cg

¼ fT < cg ¼ S
0,

where S
0 is the complement of the event, S.

Thus,

P½S� ¼ 1� P½Dn�: ð9Þ

Now, the events Bi for i � 3 can be written:

Bi ¼ fMi < cg ¼ fmaxfT1,T2, . . . ,Ti�1 þ Si�1g < cg

¼ fmaxfMi�1,Vi�1g < cg ¼ fMi�1 < cg � fVi�1 < cg

¼ Bi�1 � Ci�1 ¼ Di�1:

Since, by definition, we can write Di ¼ Bi � Ci ði ¼
2, . . . , nÞ, we have:

Di ¼ Bi � Ci ¼ Di�1 � Ci ði ¼ 3, . . . , nÞ ð10Þ

with

D2 ¼ B2 � C2 ¼ fT1 < cg � fT2 < cg:

The event Ci can be written now as the union of two
incompatible events, namely

Ci ¼ Ci � Ai�1 [ Ci � A
0
i�1 ði ¼ 3, . . . , nÞ, ð11Þ

and since S2 ¼ 0,

C2 ¼ fT2 þ S2 < cg ¼ fT2 < cg:

Parallel systems with general and non-identical lifetime distributions 5



In addition,

Ci � Ai�1 ¼ fTi þminfMi�1,Vi�1g < cg � fMi�1 � Vi�1g

¼ fTi þMi�1 < cg � fMi�1 � Vi�1g ¼ Gi�1 � Ai�1

ði ¼ 3, . . . , nÞ

and

Ci � A
0
i�1 ¼ fTi þminfMi�1,Vi�1g < cg � fMi�1 > Vi�1g

¼ fTi þ Vi�1 < cg � fMi�1 > Vi�1g ¼ F i�1 � A
0
i�1

ði ¼ 3, . . . , nÞ:

From the above two results and the relation (11), we
have

Ci ¼ Gi�1 � Ai�1 [ F i�1 � A
0
i�1 ði ¼ 3, . . . , nÞ

with

C2 ¼ fT2 < cg:

Thus, from the above result and (10), the event Di

with i� 3 can be written

Di ¼ ðGi�1 � Ai�1 [ F i�1 � A
0
i�1Þ � Di�1 ði ¼ 3, . . . , nÞ,

ð12Þ

where the events Gi, F i, and Ai are given by (8).
Using the above recursive relation for i ¼ n, we have:

Dn ¼
\n
i¼3

ðGi�1 � Ai�1 [ F i�1 � A
0
i�1Þ

( )
� D2: ð13Þ

We now set W i and Qi the intersections Gi � Ai and
F i � A

0
i, respectively, for i ¼ 2, . . . , n� 1. Since the

events W i and Qi are incompatible, the probability of
the event Dn can be written:

P½Dn� ¼ P
\n�1

i¼2

ðGi � Ai [ F i � A
0
iÞ

( )
� D2

" #

¼ P
\n�1

i¼2

ðW i [QiÞ

( )
� D2

" #

¼ P
[2n�2

j¼1

\n�1

i¼1

Y
ð jÞ
i

" #

or

P½Dn� ¼
X2n�2

j¼1

P
\n�1

i¼1

Y
ð jÞ
i

" #
, ð14Þ

where Y
ð jÞ
1 ¼ D2, and for i ¼ 2, . . . , n� 1, Y

ð jÞ
i is either

W i ¼ Gi � Ai or Qi ¼ F i � A
0
i as j runs from 1 to 2n�2

covering all possible choices.
For the probability of the event Dn, we have:

P½Dn� ¼
X2n�2

j¼1

P
\n�1

i¼1

Y
ð jÞ
i

" #
¼

X2n�2

j¼1

ð
Kj

dFðtÞ

" #
, ð15Þ

where Kj is an appropriate region in <n specified below.
From the definition of Y

ð jÞ
i it can be proved that the

region Kj is given by:

Kj ¼ K1j � � � � � Knj ð j ¼ 1, . . . , 2n�2Þ, ð16Þ

where, for all j, Kij ði ¼ 1, . . . , nÞ are intervals for the
variable ti, respectively, which are defined by the vari-
ables t1, . . . , ti�1 as follows:

ðiÞ K1j ¼ ft1 < cg,

ðiiÞ Kij ¼ ½fMi � Si � ti < c� Sig � IðY
ð jÞ
i ,W iÞ�

[ ½f0 � ti < Mi � Sig � IðY
ð jÞ
i ,QiÞ�

ði ¼ 2, . . . , n� 1Þ,

ðiiiÞ Knj ¼ ½f0 � tn < c�Mn�1g � IðY
ð jÞ
n�1,Wn�1Þ�

[ ½f0 � tn < c� Vn�1g � IðY
ð jÞ
n�1,Qn�1Þ�,

ð17Þ

where I stands for the indicator function for sets, i.e.
IðY,QÞ ¼ � when Y ¼ Q and IðY,QÞ ¼ 6 0 when Y 6¼ Q.

Thus, from (15) with absolutely continuous lifetime
distributions, the probability of the event Dn, i.e. the
probability of the unsuccessful control with n units, is
given by:

P½Dn� ¼
X2n�2

j¼1

ð
Kj

dFðtÞ ¼
X2n�2

j¼1

ð
Kj

f ðtÞ dt, ð18Þ

and after introducing (16) into (18) we take

P½Dn� ¼
X2n�2

j¼1

ð
K1j

� � �

ð
Knj

f ðtÞ dtn . . . dt1 ð19Þ

with Kij ði ¼ 1, . . . , n; j ¼ 1, . . . , 2n�2Þ given by (17).

4. Applications

Here, we give the final expressions for the system
reliability applying the results of the previous section
for n ¼ 3, 4, and 5.
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4.1. Three-non-identical units parallel system

For n ¼ 3, we have from (9)

P½S� ¼ P½T � c� ¼ 1� P½D3�;with P½D3� given by ð14Þ,

namely

P½D3� ¼
X2
j¼1

P
\2
i¼1

Y
ð jÞ
i

" #
,

where Y
ð jÞ
1 ¼ D2, and Y

ð jÞ
2 is W2 ¼ G2 � A2 for j ¼ 1 and

Q2 ¼ F 2 � A
0
2 for j ¼ 2.

Using (19), the probability of the event D3 is given by:

P½D3� ¼ P½D2W2� þ P½D2Q2�

¼
X2
j¼1

ð
K1j

ð
K2j

ð
K3j

f ðtÞ dt3 dt2 dt1:

Now, the sets Kij (i ¼ 1, 2, 3; j ¼ 1, 2) from (17)
here are:

K1j ¼ ft1 < cg,

K2j ¼ ½fM2 � S2 � t2 < c� S2g � IðY
ð jÞ
2 ,W2Þ�

[ ½f0 � t2 < M2 � S2g � IðY
ð jÞ
2 ,Q2Þ�,

K3j ¼ ½f0 � t3 < c�M2g � IðY
ð jÞ
2 ,W2Þ�

[ ½f0 � t3 < c� V2g � IðY
ð jÞ
2 ,Q2Þ�

with

S1 ¼ S2 ¼ 0, M2 ¼ T1, V2 ¼ T2:

Therefore, we have

P½S� ¼ 1� P½D3�

¼ 1�

ðc
0

ðc
t1

ðc�t1

0

f ðtÞ dt3 dt2 dt1

�

þ

ðc
0

ðt1
0

ðc�t2

0

f ðtÞ dt3 dt2 dt1

�
,

ð20Þ

which coincides with (2) for independent lifetimes.

4.2. Four-non-identical units parallel system

For n ¼ 4, we have

P½S� ¼ P½T � c� ¼ 1� P½D4�

with

P½D4� ¼
X4
j¼1

P
\3
i¼1

Y
ð jÞ
i

" #
,

where Y
ð jÞ
1 ¼ D2 and for i ¼ 2, 3 the event Y

ð jÞ
i is either

W i or Qi as j runs from 1 to 4.
Thus, using (19), the probability of the event D4 is

given by:

P½D4� ¼ P½D2W2W3� þ P½D2Q2W3� þ P½D2W2Q3�

þ P½D2Q2Q3�

¼
X4
j¼1

ð
K1j

ð
K2j

ð
K3j

ð
K4j

f ðtÞ dt4 dt3 dt2 dt1:

Now, from the relations (17), the sets Kij (i ¼ 1, . . . , 4;
j ¼ 1, . . . , 4) are:

K1j ¼ ft1 < cg,

Kij ¼ ½fMi � Si � ti < c� Sig � IðY
ð jÞ
i ,W iÞ�

[ ½f0 � ti < Mi � Sig � IðY
ð jÞ
i ,QiÞ� ði ¼ 2, 3Þ,

K4j ¼ ½f0 � t4 < c�M3g � IðY
ð jÞ
3 ,W3Þ�

[ ½f0 � t4 < c� V3g � IðY
ð jÞ
3 ,Q3Þ�

with

S1 ¼ S2 ¼ 0, M2 ¼ T1, V2 ¼ T2,

and

S3 ¼ min fT1,T2g, M3 ¼ maxfT1,T2g, V3 ¼ T3 þ S3:

Therefore, we have

P½S� ¼ 1� P½D4�

¼ 1�

ðc
0

ðc
t1

ðc�t1

t2�t1

ðc�t2

0

f ðtÞdt4 dt3 dt2 dt1

�

þ

ðc
0

ðt1
0

ðc�t2

t1�t2

ðc�t1

0

f ðtÞdt4 dt3 dt2 dt1

þ

ðc
0

ðc
t1

ðt2�t1

0

ðc�t1�t3

0

f ðtÞdt4 dt3 dt2 dt1

þ

ðc
0

ðt1
0

ðt1�t2

0

ðc�t2�t3

0

f ðtÞdt4 dt3 dt2 dt1

�
,

ð21Þ

which coincides with (4) for independent lifetimes.
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4.3. Five-non-identical units parallel system

For higher values of n, the evaluation of the probabil-
ity of the successful control of the process becomes quite
complicated. The results (9), (14), (17), and (19) are
quite helpful in deriving an explicit expression for the
above probability. Applying these results for n ¼ 5, we
directly get the following expression for P½S�.

P½S� ¼ 1�P½D5�

¼ 1�

ðc
0

ðc
t1

ðc�t1

t2�t1

ðc�t2

t3�t2þt1

ðc�t1�t3

0

f ðtÞdt5 dt4 dt3 dt2 dt1

�

þ

ðc
0

ðt1
0

ðc�t2

t1�t2

ðc�t1

t3þt2�t1

ðc�t2�t3

0

f ðtÞdt5 dt4 dt3 dt2 dt1

þ

ðc
0

ðc
t1

ðt2�t1

0

ðc�t3�t1

t2�t3�t1

ðc�t2

0

f ðtÞdt5 dt4 dt3 dt2 dt1

þ

ðc
0

ðt1
0

ðt1�t2

0

ðc�t2�t3

t1�t2�t3

ðc�t1

0

f ðtÞdt5 dt4 dt3 dt2 dt1

þ

ðc
0

ðc
t1

ðc�t1

t2�t1

ðt3�t2þt1

0

ðc�t2�t4

0

f ðtÞdt5 dt4 dt3 dt2 dt1

þ

ðc
0

ðt1
0

ðc�t2

t1�t2

ðt3þt2�t1

0

ðc�t1�t4

0

f ðtÞdt5 dt4 dt3 dt2 dt1

þ

ðc
0

ðc
t1

ðt2�t1

0

ðt2�t3�t1

0

ðc�t1�t3�t4

0

f ðtÞdt5 dt4 dt3 dt2 dt1

þ

ðc
0

ðt1
0

ðt1�t2

0

ðt1�t2�t3

0

ð c�t2�t3�t4

0

f ðtÞdt5 dt4 dt3 dt2 dt1

�
:

ð22Þ

The above expression can provide the final value for
P½S� in a straightforward way when the unit lifetimes
are, for example, independent and exponentially distrib-
uted. For less mathematically tractable distributions,
or larger values of n, mathematical packages like
Mathematica or Matlab can be applied.
The result (14) together with the recursive relation

(12) provides an explicit expression for the probability
of Dn as a sum of probabilities involving simple expres-
sions for the unit lifetimes in terms of inequalities pro-
vided by the expressions (i)–(vi) in (8). For example,
the application of the above results for n ¼ 4 directly
provides the relation (3).

Remark 1: Based on those inequalities, the reliability
of the system and the expected number of units used
can be easily evaluated by applying Markov Chains
Monte Carlo (MCMC) techniques. The expected
number E[N ] of units N used during the required
period of time, c, is evaluated through the expression:
E½N� ¼ nf1� P½S�g þ E½NjS� P½S�. We have developed
a simulation program that runs with Mathematica
and provides final values for the system reliability
and the expected number of units used for any value

of n with independent lifetimes and general lifetime
distributions.

5. Analytical results with special distributions

In this section, we present analytical results for the
reliability of an n-unit system with n ¼ 3, 4, and 5
with independent unit lifetimes identically and exponen-
tially distributed. For the non-identical case, we present
a three-independent-units system with unit lifetimes
exponentially distributed. We also present a three-
identical-independent unit system with unit lifetimes
following a certain Weibull distribution.

5.1. Reliability of a three-identical-units system with
exponential lifetimes

If the lifetimes of the three units are independent
exponentially distributed with the same parameter b,
then from (2), or equivalently from (20), we get the
following result:

P½S� ¼ P½T � c� ¼ �3e�2bc � 2bce�2bc þ 4e�bc: ð23Þ

The system reliability (23) for various values of c
and b (c 2 ½0, 100� and b 2 ½0:02, 0:04�), is shown in
figure 4.

According to Kokolakis et al. (1996) where all three
units are allowed to work in parallel, and the unit start-
ing times Si are prescheduled and equal to si ði ¼ 2, 3Þ,
respectively, with s1 ¼ 0, the corresponding expression
for the system reliability is as follows:

P½S� ¼ P½T � c� ¼ 4e�bc � e�bð2c�s2Þ � 2e�bð2c�s3Þ

� e�bðcþs3�s2Þ þ e�bð3c�s2�s3Þ: ð24Þ

After optimizing the above expression with respect to s2
and s3, we get s2 ¼ 0 and s3¼c�ð1=2bÞlnð2e2b�1Þ (�c).

Figure 4. System reliability for required period c2 [0, 100]

with parameter b2 [0.02, 0.04].
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Substituting these values in the relation (24), we have:

P½S� ¼ P½T � c�

¼ 4e�bc � e�2bc � 2 exp �b c þ
lnð�1þ 2ebcÞ

2b

� �� �

� exp �b 2c�
lnð�1þ 2ebcÞ

2b

� �� �

þ exp �b 2cþ
lnð�1þ 2ebcÞ

2b

� �� �
:

ð25Þ

Figure 5 presents reliability diagrams for c ¼ 10,
20, 30, 40, 50, and 60, and for b 2 ½0:02, 0:04� for the
above two policies. It is obvious that the second policy
is inferior, as expected, to our policy, and this is
due to the fact that the second policy refers to an open
loop problem where up to n units are allowed to work
simultaneously.

5.2. Reliability of a four-identical-units system with
exponential lifetimes

If the lifetimes of the four units are independently
exponentially distributed with the same parameter b,

0.025 0.03 0.035 0.04

0.97

0.975

0.98

0.985

0.99

0.995

c = 10

0.025 0.03 0.035 0.04

0.86

0.88

0.9

0.92

0.94

0.96

c = 20

0.025 0.03 0.035 0.04

0.7

0.75

0.8

0.85

0.9

c = 30

0.025 0.03 0.035 0.04

0.55

0.6

0.65

0.7

0.75

0.8

0.85

c = 40

0.025 0.03 0.035 0.04

0.4

0.5

0.6

0.7

0.8

c = 50

0.025 0.03 0.035 0.04

0.3

0.4

0.5

0.6

0.7

c = 60

b

P

b

P

P

b

P

b b

P

P

b

Figure 5. System reliability diagrams for required period c¼ 10, 20, 30, 40, 50, and 60, and b2 [0.02, 0.04]. The dotted lines correspond

to the second policy (formula 25).
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then from (4), or equivalently from (21), we have the
following result:

P½S�¼P½T � c� ¼�7e�2bc�6bce�2bc�2b2c2e�2bcþ8e�bc:

ð26Þ

The reliability (26) for various values of c and
b ðc 2 ½0, 100� and b 2 ½0:02, 0:04�) is shown in the
following figure 6.

5.3. Reliability of a five-identical-units system with
exponential lifetimes

If the lifetimes of the five units are independent expo-
nentially distributed with the same parameter b, then
from (22), we have the following result:

P½S� ¼ P½T � c� ¼ �15e�2bc � 14bce�2bc � 6b2c2e�2bc

�
4

3
b3c3e�2bc þ 16e�bc:

ð27Þ

The reliability (27) for various values of c and b
ðc 2 ½0, 100� and b 2 ½0:02, 0:04�Þ is shown in figure 7.

5.4. Reliability of a three-non-identical units system with
exponential lifetimes

If the lifetimes of the three units are independently
exponentially distributed with different parameters
bi ði ¼ 1, 2, 3Þ, the system reliability P½S� is derived
applying the result (2) or equivalently (20). The final
expression for P½S� is quite large and thus is presented
in the Appendix.

Remark 2: It is interesting to notice that the expression
for P½S� in the Appendix is symmetrical with respect to b1
and b2. This is also true with any lifetime distributions

and is due to the fact that the first two units start simul-
taneously.

In the case of different lifetime distributions, it might
be of interest to optimize the system with respect to the
order in which the units are introduced. In the case of
three non-identical units with exponential lifetimes, it
can be proved easily from the expression provided in
the Appendix that the probability of successful control
is maximized by using the best, i.e. the one with the
larger mean lifetime, last. For example, with c ¼ 10
and (b1, b2, b3), the permutations of the numbers
0.08, 0.05, and 0.025, we obtain P½S� ¼ 0:9647 when
b3 ¼ 0:025,P½S� ¼ 0:9642 when b3 ¼ 0:05 and P½S� ¼
0:9636 when b3 ¼ 0:08, while the interchange of b1
with b2 does not matter.

In addition, analytical results from (21), or equiva-
lently from (4), in the case of four non-identical units
with exponential lifetimes, have been derived.
Numerical examples show again that the better unit
has to be used later.

5.5. Reliability of a three-identical-units system with
Weibull lifetimes

If the lifetimes of the three units are independent and
follow a Weibull distribution with the same parameters
b ¼ 2 and � ¼ 1, i.e. when fiðtÞ ¼ 2te�t2 (i ¼ 1, 2, 3),
then from (2), or equivalently from (20), we have the
following result:

P½S� ¼ P½T � c�

¼ �
5

3
e�2c2 þ

8

3
e�c2 � ce�ð3=2Þc2

ffiffiffiffiffiffi
2�

p
Er f

cffiffiffi
2

p

� �

þ
2

3
ce�ð2=3Þc2

ffiffiffi
�

3

r
Er f

cffiffiffi
3

p

� �
þ
2

3
ce�ð2=3Þc2

ffiffiffi
�

3

r
Er f

2cffiffiffi
3

p

� �
,

ð28Þ

Figure 6. System reliability for required period c2 [0, 100]

with parameter b2 [0.02, 0.04]. Figure 7. System reliability for required period c2 [0, 100]

with parameter b2 [0.02, 0.04].
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where

Er f ½z� ¼
2ffiffiffi
�

p

ðz
0

e�t2dt:

In this case, the units’ mean lifetimes are E½Ti� ¼
ffiffiffi
�

p
=2

(i ¼ 1, 2, 3). It is interesting to notice that if the lifetimes
of the three units above had an exponential distribution
with the same mean, i.e. with b�1 ¼

ffiffiffi
�

p
=2, the system

reliability is lower for small values of c and higher for
large values of c, as figure 8 shows.

6. Remarks and conclusions

This paper presents the determination of the reliability
of a two-unit redundant system supported by (n� 2)
standbys by using recursive probabilistic analysis. Units
are non-repairable with general and non-identical life-
times. Our basic results refer to non-independent unit
lifetimes, while independence is considered as a special
case. Applying special distributions, the system reliabil-
ity is evaluated in a straightforward way in many cases.
The evaluation of the system reliability can be com-
plicated for mathematically intractable distributions
or for large values of n. In future, this work can be
extended, applying simulation programs or techniques
like Markov Chains Monte Carlo (MCMC), which
can be proved very helpful. Also, it can be useful
in case of non-identical distributions to investigate the
problem of optimization with respect to the ordering
of the units. Another interesting extension of this
work is to apply an analogous probabilistic analysis to
a three-unit redundant system supported by (n� 3)
standbys.
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Appendix

Applying the result (2), or equivalently (20), for inde-
pendent lifetimes of three units which follow exponential
distributions with parameters bi (i ¼ 1, 2, 3), we get the
following result for the system reliability P½S�:

P½S� ¼ P½T � c� ¼ 1

�
b31

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b32

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b21b2

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b22b1

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
2b21b3

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
2b22b3

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b1b2b3

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b1b2b3

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b1b

2
3

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b2b

2
3

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b22b1e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b21b2e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
2b21b2e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
2b1b

2
2e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b31e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b32e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b22b3e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b21b3e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
3b1b2b3e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

1 2 3 4 5
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Figure 8. System reliability functions for required-period

c2 [0, 5] of a three-units system with Weibull and exponential

unit lifetimes distributions of equal means.
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�
3b1b2b3e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
2b21b3e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
2b22b3e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b2b

2
3e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b1b

2
3e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b1b

2
3e

�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b2b

2
3e

�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b22b3e

�ðb1þb2Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b21b3e

�ðb1þb2Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
2b1b2b3e

�ðb1þb2Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
2b1b2b3e

�ðb1þb2Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b2b

2
3e

�ðb1þb2Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b1b

2
3e

�ðb1þb2Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b31e

�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b32e

�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b21b2e

�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b1b

2
2e

�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b21b3e

�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b22b3e

�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b1b2b2e

�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b1b2b2e

�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b31e

�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b32e

�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
2b21b2e

�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
2b1b

2
2e

�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

�
b1b

2
2e

�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

�
b21b2e

�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b21b3e

�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b22b3e

�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ
b1b2b3e

�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ

þ
b1b2b3e

�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ
:
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