
c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 7 ( 2 0 1 0 ) 53–61

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

A multi-classifier system for the characterization of normal,
infectious, and cancerous prostate tissues employing
transrectal ultrasound images

Dimitris Glotsosa,∗, Ioannis Kalatzisa, Pantelis Theocharakisb, Pantelis Georgiadisb,
Antonis Daskalakisb, Kostas Ninosa, Pavlos Zoumboulis c,
Anna Filippidouc, Dionisis Cavourasa

a Department of Medical Instruments Technology, Technological Educational Institute of Athens, Ag. Spyridonos, Aigaleo,
Athens 12210, Greece
b Medical Image Processing and Analysis Laboratory, Department of Medical Physics, University of Patras,
Rio-Patras 26500, Greece
c Ultrasound Department, Echonet, 319 Kifissias Avenue, Kifissia, Athens 14561, Greece

a r t i c l e i n f o

Article history:

Received 1 September 2008

Received in revised form

30 June 2009

Accepted 6 July 2009

Keywords:

Prostate

Transrectal ultrasound

Textural features

Pattern classification

Multi-classifier systems

a b s t r a c t

A computer-aided diagnostic system has been developed for the discrimination of normal,

infectious and cancer prostate tissues based on texture analysis of transrectal ultra-

sound images. The proposed system has been designed using a panel of three classifiers,

which have been evaluated individually or as a mutli-classifier scheme, using the external

cross-validation procedure. Clinical data consisted of 165 transrectal ultrasound images,

characterized by an experienced physician as normal (55/165), cancerous (55/165), and

infectious (55/165) prostate cases. From each image, the physician delineated the most

representative regions of interest, from which, 23 textural features were extracted. Clas-

sification was seen as a two level hierarchical decision tree. Normal from infectious and

infectious from cancer cases were discriminated at the 1st and 2nd level of the decision

tree, respectively. The best classification results for the 1st level were 89.5%, whereas for

the 2nd level 90.1%. The utilization of multi-classifier system improved the discrimination

of prostate pathologies as compared to individual classifiers; for infectious prostate cases

improvement was from 87.3% to 88.7% and for cancer prostate cases improvement was from

84.1% to 91.4%. In terms of overall system performance (the decision tree’s node propagating
error taken into account), best classification accuracies were 89.5%, 79.6% and 82.7% for the

recognition of normal, infectious and cancer cases, respectively. The proposed system might

be used as a second opinion tool for assisting diagnosis of different prostate pathologies.
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1. Introduction

The three most common and significant pathologies of the
prostate gland are infection (which refers to prostate inflam-
mation), hyperplasia (that is, abnormal growth of benign
prostate cells) and cancer. Standard diagnostic tests for
discriminating these pathologies are digital rectal examina-
tion and transrectal ultrasound imaging (TRUS) [1,2]. Other
diagnostic test comprise power Doppler imaging [3] and com-
bined ultrasonic and magnetic-resonance methods [4]. TRUS
imaging is performed for assessing the size of the prostate
gland and assisting the visually identification of tumors [5,6].
Although TRUS is among the most important tools for diag-
nosing prostate pathologies, its accuracy is limited by means
of poor inter-and intra-observer reproducibility of the observ-
ing physicians [7,8]. To ameliorate for this effect, several
computer-aided diagnostic (CAD) systems have been proposed
as second opinion tools [9–16]. CAD systems comprise two
important stages: (i) the feature extraction stage, in which the
morphological and textural patterns of the prostate gland in
ultrasound images are encoded in the form of numerical fea-
tures (patterns) and (ii) the classification stage, in which these
patterns are interpreted into diagnostic conclusions, using
pattern classification methods.

In general, all the developers of proposed CAD systems
agree upon the characteristics (morphological and textural)
that seem to be important for the evaluation of prostate
pathologies in ultrasound images. However, the existence of
multiple classification algorithms implies that there is a lack
of consensus among experts as to which is the best single
classification approach. Additionally, the reported specifici-
ties, sensitivities and overall accuracies in discriminating
normal from cancerous prostate tissues vary significantly
from 78% to 85.7%. The latter variation might be possibly
due to the utilization of different (a) classification method-
ologies [10,12,15,17], (b) diagnostic features, (c) ROI (region
of interest) selection, (d) pixel resolution sizes and (e) ultra-
sound imaging equipment. An important aspect that remains
problematic in CAD systems is that the evaluation of the
classifiers’ performance has been applied mostly internally
to the feature selection process [12,18]. The latter has been
identified as generating optimistic estimates of the classifier’s
performance [19–22]. Thus, features selected using internal
validation processes (like cross-validation) are most likely to
generalize poorly to unseen data. The latter effect has not
been investigated by previous studies making difficult the
extraction of conclusions regarding generalization. Moreover,
there are few studies that have used wrapper feature selec-
tion methods [13] (i.e. features are selected independently
of the classifier construction stage [19–22]), but these stud-
ies, have reported relatively low accuracies (area under the
receiver operating characteristic (ROC) curve 61.6%). Moreover,
most of previous studies have explored the discrimination
of normal from cancer prostate cases. However, there are
other important subcategories deserving special attention,

such as hypertrophy and infectious prostates. The integra-
tion of hypertrophy in a CAD system has been examined
by [15] with accuracy 78%. However, infectious cases, possi-
bly representing early stages of cancer development [23,24],
n b i o m e d i c i n e 9 7 ( 2 0 1 0 ) 53–61

have not been yet consider in the construction of CAD sys-
tems.

In this study a CAD system has been developed for dis-
crimination of normal, infectious and cancer prostate tissues
based on texture analysis of transrectal ultrasound images.
The proposed CAD system presents three unique character-
istics compared to other studies, attempting to overcome
limitations in existing literature, mentioned in previous para-
graph: (a) in contrast to previous studies that have used
internal validation procedures, an external cross-validation
procedure has been used in this study for evaluating the
performance of the CAD system. In this way, the gener-
alization capacity of the system to unseen data could be
assessed [19–22]. (b) The CAD system has been designed
using a multi-classifier system in contrast to previous stud-
ies that have used single classifiers. In this way, we have
tried to investigate whether suitable combinations of clas-
sifiers might improve success rates in predicting different
prostate pathologies. (c) Finally, to the best of our knowledge,
the proposed CAD system comprises the first attempt to exam-
ine and to put emphasis in discriminating infectious from
normal and cancerous cases. The latter discrimination is of
major significance since infectious cases have been reported
as possible early stage symptoms of emerging prostate cancer
[23,24].

2. Methods

2.1. Region of interest (ROI) acquisition

A total number of 165 TRUS prostate images from 165
patients were obtained by an experienced physician (P.Z.),
using an HDI-3000 ATL digital ultrasound system with a
wide band (5–12 MHz) probe. The image dataset comprised
55 Prostate Normal cases (PRNO) with no pathological find-
ings, 55 prostate infection cases (PRIN) and 55 prostate cancer
cases (PRCA). All pathological cases were subjected to ultra-
sound guided biopsy by an experienced pathologist (A.F.)
and were histological confirmed. A video grabber was used
for image digitization at 320 × 256 × 8 bit. In each image,
the physician, with the help of a custom made program
(Fig. 1), chose a 30 × 30 pixel size region of interest, which
included part of the corresponding region of interest (ROI)
for the PRIN, PRCA and PRNO. Considering that our sys-
tem’s resolution was 16.66 pixels/mm, each ROI’s area was
3.24 mm2.

2.2. Feature extraction

A series of features were computed from each ROI. Four fea-
tures were computed from the ROI’s histogram (mean value,
standard deviation, skewness, and kurtosis), 14 from the co-
occurrence matrices [25] and 5 from the run-length matrices
[26]. In this way, 23 features represented each case (patient)
since feature extraction was based on 30 × 30 ROI extracted by

the participating radiologist from most representative region
of the patient’s image. A more detailed description of how
these features are computed can be found in Appendix A. All
23 features were normalized to zero mean and unit standard
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Fig. 1 – Custom made p

eviation [27], according to the following equation

˜ i = xi − �

�
(1)

here xi is the ith feature, x̃i the normalized ith feature, � the
ean value and � is the standard deviation of the ith feature

f all patterns in all classes considered.

.3. Design of the classification scheme

two level hierarchical decision tree was designed to dis-
riminate the normal prostate cases from the infectious and
ancerous cases. At the 1st level, the cancer and the prostati-
is cases were grouped into the prostate abnormal (PRAB) class
nd were classified against the normal prostate (PRNO) cases.
t the 2nd level, the abnormal cases were further classified

nto cases with cancer and infection. The selection of the two
evel hierarchical decision tree structure was motivated by the
act that this structure resembles the diagnostic procedure
ollowed by expert physicians in diagnosis of prostate cancer
ased on TRUS images.

At each level, classification was performed using three
ifferent classifiers either individually or combined in a
ulti-classifier (MC) system. Classifiers employed were the

ubic Least Square Mapping Probabilistic Neural Network
LSM3PNN) [28,29], the Quadratic Bayesian (BAYES) [27] and
he Support Vector Machines (SVM) employing a radial-basis
unction kernel [30]. Many classifier evaluation methods exist
n literature, such as the leave-one-out, the k-fold [27], or the
xternal cross-validation [19–22]. The selection of the valida-

ion process is an important task; there are few validation
rocesses, which allow the extraction of conclusions regard-

ng the generalization of the methods used. In two previous
tudies [19,31], it has been demonstrated that cross-validation
am for ROI acquisition.

samples should be kept external to the feature selection
process. Moreover in [19], researchers have also assessed sev-
eral techniques for estimating the generalization error. They
showed that the external 10-fold cross-validation error is one
of the most unbiased estimators of the generalization error.
Hence, we have used the external cross-validation. Accord-
ingly, data were randomly split into two main subsets: a
training subset comprising 2/3 of available samples (train-
ing data) and a test subset consisting of the remaining 1/3
of available samples (test data). Training data were used for
feature selection and training of each classifier using the
exhaustive search (combinations up to five features) and the
leave-one-out methods [32]. Following feature selection, the
performance of each classifier and the MC-system (described
in the following paragraph) was then evaluated on the remain-
ing test data. This process was repeated 10 times for 10
different random splits of all available samples into train-
ing and test data. The average accuracies and ranges were
computed. In this way the external cross-validation estimate
of the classifiers’ performance was determined. Thus, with
the external cross-validation process, at each stage of the
cross-validation process, the same feature selection method
is implemented only to the training data, external to the
test subset, correcting in this way for the feature selection
bias. Fig. 2 illustrates the design of the system using indi-
vidual classifiers and internal validation method (exhaustive
search and leave-one-out). The construction of the system
using external validation (10-fold external cross-validation)
and individual classifiers is depicted in Fig. 3. Finally, Fig. 4
demonstrates the structure of the MC-system under external
validation.
The MC-system was constructed using as ensemble combi-
nation rule the majority vote (MV) [33,34]. The MV MC-system
output was formulated according to the decision of the major-
ity of classifiers (in our case, at least more than half of the
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Fig. 2 – Design of the system using individual classifiers
and internal validation method (exhaustive search and
leave-one-out).

Fig. 3 – The construction of the system using external
validation (10-fold external cross-validation) and individual
classifiers.
Table 1 – Performance of individual classifiers using internal validation (internal leave-one-out) against external
validation (10-fold external cross-validation).

Internal validation External validation

BAYES LSM3PNN SVM-RBF BAYES LSM3PNN SVM-RBF

1st level
PRNO 96.4 94.5 76.4 94.7 89.9 85.0
PRAB 87.3 91.8 90.0 85.3 89.2 90.9
Overall 90.3 92.7 85.5 88.6 89.5 88.8

2nd level
PRIN 89.1 94.5 92.7 90.9 87.3 86.6
PRCA 98.2 90.9 80.0 79.7 84.1 83.7
Overall 93.6 92.7 86.4 85.4 85.9 85.2

Overall system performance
PRNO 90.3 92.7 85.5 88.6 89.5 88.8
PRIN 77.8 86.8 83.4 77.5 77.9 78.7
PRCA 85.7 83.4 72.0 68.0 75.0 76.1
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Table 2 – 1st level of the decision tree: sensitivity,
specificity and overall accuracy of the MC-system (SVM,
BAYES and LSM3PNN) in discriminating PRNO from
PRAB cases.

Average success rates (%)

PRNO 86.7
PRAB 89.8
Overall accuracy 88.7

Table 3 – 2nd level of the decision tree: sensitivity,
specificity and overall accuracy of the MC-system (SVM,
BAYES and LSM3PNN) in discriminating PRIN from PRCA
cases.

Average success rates (%)

PRCA 91.4
PRIN 88.7
Overall accuracy 90.1

Table 4 – Performance of individual classifiers using
10-fold external cross-validation against the MC-system
for both levels of the decision tree. Bold numbers
indicate highest accuracies achieved.

BAYES LSM3PNN SVM-RBF MC-system

Overall system performance
ig. 4 – The structure of the MC-system under external
alidation.

lassifiers should agree on that decision):

MV = arg max
k

r∑
i=1

dki (2)

here CMV is the output class of the MV MC-system, dki ∈ {0, 1}
s a binary decision value of kth class for the ith classifier (1
orresponds to classification to class k and 0 to classification
n any other class) and r is the number of classifiers.

All algorithms have been developed in custom MATLAB®

ode.

. Results
able 1 depicts the performance of individual classifiers using
nternal validation (internal leave-one-out) against external
alidation (10-fold external cross-validation) for both levels
PRNO 88.6 89.5 88.8 88.7
PRIN 77.5 77.9 78.7 79.6
PRCA 68.0 75.0 76.1 82.7

of the decision tree. The overall system accuracy for each
classifier (last three rows of Table 1) was determined by mul-
tiplication of the each classifier’s performance at each level
[27]. According to the results obtained from internal valida-
tion, best classifier for the 1st level of the decision tree was
the LSM3PNN with overall accuracy 92.7%, whereas for the 2nd
level the Bayesian attained the maximum accuracy with 93.6%.
These high classification rates reduced notably when external
validation was applied. For both the 1st and 2nd levels of the
decision tree the LSM3PNN resulted to the highest accuracies,
with 89.5% and 85.9%, respectively. In terms of overall system
performance (the decision tree’s node propagating error taken
into account), the proposed methodology led to the more accu-
rate results for the discrimination of PRNO, PRIN and PRCA
cases using the LSM3PNN with 89.5%, 77.9% and 75.0%, respec-
tively.

Tables 2 and 3 presents average classification accuracies
attained using an ensemble classifier scheme comprising
the SVM, BAYES and LSM3PNN classifiers for both levels
of the decision tree. The MC-system’s sensitivity, specificity
and overall accuracy in discriminating normal from abnor-
mal prostate cases were 86.7%, 89.8% and 88.7%, respectively.
For the 2nd level, sensitivity, specificity and overall accuracy
reached 91.4%, 88.7% and 90.1%, respectively. Table 4 illus-
trates comparative results for the individual classifiers versus
the MC-system in terms of overall system performance (the

decision tree’s node propagating error taken into account).
The latter results were obtained using a 10-fold external cross-
validation process. Fig. 5 illustrates the best design of the CAD
system, for both levels of the decision tree, according to the 10-
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Fig. 5 – Best structure of the CAD system. According to the
10-fold external cross-validation results, optimum
performance at the 1st level of the decision tree has been

obtained using the LSM3PNN. For the 2nd level, the
MC-system gave the highest results.

fold external cross-validation results. Finally, Table 5 presents
the external cross-validation performance (in terms of clas-
sification accuracy and area under Receiver Operation Curve
(ROC)) of individual classifiers using the sequential forward
floating selection method at the feature selection stage. All
classifiers present high values, from 0.941 to 0.947 for the 1st
level and from 0.956 to 0.971 for the 2nd level of the classifica-
tion tree.

4. Discussion

There has been intensive research concerning pattern recogni-
tion methods for automating prostate diagnosis on ultrasound
images, due to the poor depiction of different prostate tis-

sues in these images. Excellent literature surveys concerning
computer-aided detection and classification of prostate tis-
sues may be found in [7,18]. Basset et al. [15] has developed
a rule based expert system that discriminated normal, benign

Table 5 – External validation performance (in terms of
classification accuracy and area under ROC curve) of
individual classifiers using the sequential forward
floating selection method at the feature selection stage.

BAYES LSM3PNN SVM-RBF

1st level
PRNO 93.0 86.5 77.3
PRAB 79.8 83.1 90.8
Overall 84.5 84.3 86.1
AUROC 0.947 0.941 0.946

2nd level
PRIN 95.2 88.4 91.2
PRCA 87.8 86.5 87.5
Overall 91.2 87.4 89.2
AUROC 0.971 0.956 0.969
n b i o m e d i c i n e 9 7 ( 2 0 1 0 ) 53–61

hypertrophy, and cancer prostate cases with 78% accuracy.
Lorenz et al. [12] have utilized pattern recognition methods
with neuro-fuzzy classifiers for the separation of benign from
malignant prostate tissues with success rates up to 86%. Huy-
nen et al. [9] explored classification trees as possible tools
for identifying normal and malignant prostate tissues with
an accuracy of 85.7%. Moreover, in a recent study, hidden
markov models and k-NN classification have been compared
for discrimination of prostate tissues into cancerous and non-
cancerous, with results, in terms of area under the receiver
operating characteristic curve, up to 61.4% [14]. Direct com-
parison of the results presented in our study with those
reported in literature is very difficult to perform due to the
different experimental set up of each study (i.e. number of
cases, ultrasound units, image resolution, selected features,
ROIs sizes [5,9,10,12,15,16]). Reported accuracies range from
78% to 85.7%. There are also some studies that have reported
accuracies up to 93.7% [13], using, however, extremely small
datasets (16 ROIs in total), subject to important statistical vari-
ations. Results presented in this study are in line with those
reported in literature, however, with a significant difference:
Results have been obtained using an external cross-validation
process, in contrast to most previous studies [12,18] that
have used internal validation processes. Internal validation
processes endanger the generation of optimistically biased
estimates of the classification method’s performance, whose
occurrence has been noted in our experiments. For the best
individual classifier (LSM3PNN) classification rates reduced
drastically when the external cross-validation processed was
used (see Tables 1–4). The latter confirms the argument that
if internal validation processes are applied, the resulting esti-
mates of the classifier’s performance are considerably biased.
Thus, up to this point, we have developed a CAD system that
ensures to a certain extent that its success rates in discrim-
inating normal, infectious and cancer prostate tissues will
remain the same even when evaluating new prostate cases.

According to [35], the exhaustive search and the branch and
bound methods are the only feature selection methods that
guarantee optimal feature subset selection. Exhaustive search
is computationally intensive and cannot be used for large
number of features combinations. However, due to sparsely of
data (to use a larger number of features it is required a larger
number of cases), in our case combinations up to five features
might be regarded as adequate considering the high classi-
fication results that we have obtained using these features.
Other methods such as sequential floating forward search,
‘plus l-take away r’, and best individual features are subop-
timal. We have selected to use exhaustive search for optimal
feature selection. For comparative purposes we have also used
sequential floating selection (see Table 5).

Following, we have investigated a classifier combination
scheme as an alternative to using individual classifiers. The
motive was to test whether the utilization of an effective com-
bination of a panel of classifier’s, which explore data from a
different perspective (geometrical criteria for the SVM, statis-
tical criteria for the Bayesian and augmentation in conjunction

with non-parametric density estimation for the LSM3PNN),
might enhance sensitivity and specificity in discriminating
different prostate pathologies. The latter has been verified to
a certain extent. Regarding the discrimination of PRNO, the
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C-system gave slightly inferior results compared to the best
ndividual classifier (89.5% and 88.7%, respectively). However,
lassification of PRIN and PRCA enhanced. For PRIN cases,
lassification accuracy notably enhanced from 77.9% to 79.6%,
hereas for PRCA case, success rates increased from 76.1% to

2.7%. These results lead to two important conclusions: (a) the
otential of MC-system to boost accuracy in prostate patholo-
ies classification and (b) the potential to sufficient accurately
iscrimination between PRCA from PRIN cases. The latter dis-
rimination has gained wide attention recently [23,24], since
nfectious prostate tissues may represent one mechanism
hrough which prostate cancer develops, thus, their accurate
ecognition is of increasing merit. To the best of our knowl-
dge, neither MC-systems nor the discrimination of PRIN from
RCA cases has been reported in literature.

In this study, a CAD system has been developed to inves-
igate whether accurate separation of normal, infectious and
ancerous prostate tissues might be feasible by analysing tex-
ural properties of TRUS images. Three important conclusions
ave risen: (a) Results are in line with those presented in

iterature, however, it has to be stressed that the proposed
ystem has been evaluated using an external cross-validation
rocess. Thus, we may argue that results are indicative of
he generalization of the method to new prostate cases. (b)
he utilization of MC-system improves the discrimination of
rostate pathologies (infectious prostate cases: improvement
rom 77.9% to 79.6%; cancer prostate cases: improvement from
6.1% to 82.7%). Finally, (c) the discrimination of infectious
nd cancerous prostate cases is feasible with reasonably high
ccuracies, reaching 79.6% and 82.7%, respectively.

. Conclusions

s a conclusion, it can be considered that the combination of
he complementary information from many classifiers in the
orm of the proposed multi-classifier system is an effective
lternative to single classifier systems for prostate diagnosis.
dditionally, the proposed system can be used as a second
pinion tool for assisting physicians in prostate tissues char-
cterization when analysing transrectal ultrasound prostate
mages.
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ppendix A. A short description of the textural
eatures employed in this paper

.1. Features derived from the image gray-level
istogram [27]

. Mean value
m = 1
NxNy

Nx∑
x=1

Ny∑
y=1

I(x, y) (A.1)
b i o m e d i c i n e 9 7 ( 2 0 1 0 ) 53–61 59

where Nx and Ny are the image dimensions and I(x,y) is the
gray-level of the image pixel with coordinates (x,y).

2. Standard deviation

s =
[

1
NxNy

Nx∑
x=1

Ny∑
y=1

(I(x, y) − m)2

]1/2

(A.2)

3. Skewness

sk = 1
NxNys3

Nx∑
x=1

Ny∑
y=1

[I(x, y) − m]3 (A.3)

4. Kurtosis

ku = 1
NxNys4

Nx∑
x=1

Ny∑
y=1

[I(x, y) − m]4 (A.4)

A.2. Features derived from the image gray-level
co-occurrence matrix

The (i,j)-element of the co-occurrence matrix [25] for angle �

of an image matrix I is defined as

P�(i, j) = #{((x1, y1), (x2, y2)) : f (x1, y1) = i, f (x2, y2) = j,

x2 = x1 + cos �, y1 = y2 + sin �}

where (x1,y1) and (x2,y2) are two consecutive pixels of the
image at angle �.

In the present work, the co-occurrence matrices for angles
� ∈ {0◦, 45◦, 90◦, 135◦} where calculated, and their mean value
was used for independency over rotation.

From the co-occurrence matrix the following features can
be defined:

5. Angular second moment

ASM =
Ng∑
i

Ng∑
j

p(i, j)2 (A.5)

where p(i,j) is the (i,j)-element of the normalized co-
occurrence matrix and Ng is the number of gray-levels in
the image.

6. Contrast

CON =
Ng−1∑
n=0

n2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ng∑
i∣∣i − j

∣∣ = n

Ng∑
j

p(i, j)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A.6)
7. Correlation

COR =
∑Ng

i

∑Ng

j
[i j p(i, j)] − �x�y

�x�y
(A.7)
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where �x, �y are the mean values of Px,Py correspond-
ingly and �x,�y their standard deviations, where Px(i) =∑Ny

j
p(i, j) and Py(i) =

∑Nx

i
p(i, j).

8. Auto-correlation

ACO =
Ng∑
i

Ng∑
j

i j p(i, j) (A.8)

9. Sum of squares

SSQ =
Ng∑
i

Ng∑
j

(i − �)2p(i, j) (A.9)

10. Inverse difference moment

IDF =
Ng∑
i

Ng∑
j

p(i, j)

1 + (i − j)2
(A.10)

11. Entropy

ENT = −
Ng∑
i

Ng∑
j

p(i, j) ln(p(i, j)) (A.11)

12. Sum entropy

SEN = −
i=2Ng∑

i=2

Px+y(i) ln(Px+y(i)) (A.12)

where Px+y(k) =
∑Ng

i
i+j=k

∑Ng

j
p(i, j), k = 2, 3, . . . , 2Ng and

Px−y(k) =
∑Ng

i
|i−j|=k

∑Ng

j
p(i, j), k = 0, 1, . . . , Ng.

13. Sum average

SAV =
i=2Ng∑

i=2

i Px+y(i) (A.13)

14. Sum variance

SVA =
i=2Ng∑

i=2

(i − SEN)2 Px+y(i) (A.14)

15. Difference variance

DVA = VARIANCE(Px−y(i)) (A.15)

16. Difference entropy

Ng−1∑

DEN = −

i=0

Px−y(i) ln(Px−y(i)) (A.16)

17. Information measure of correlation 1

IMC1 = ENT − ENTXY1
max{ENTX, ENTY} (A.17)
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where ENTX = −
∑Ng

i

∑Ng

j
px(i, j) ln(px(i, j)), ENTY =

−
∑Ng

i

∑Ng

j
py(i, j) ln(py(i, j)), and ENTXY1 =

−
∑Ng

i

∑Ng

j
[p(i, j) ln(px(i, j)px(i, j))].

18. Information measure of correlation 2

IMC2 = [1 − e−2(ENTXY2−ENT)]
1/2

(A.18)

where ENTXY2 = −∑Ng

i

∑Ng

j
[px(i, j)py(i, j) ln(px(i, j)py(i, j))].

A.3. Features derived from the image gray-level
run-length matrix:

Let QRL(i,j) the (i,j)-element of the run-length matrix [26]. Then,
i is the gray-level and j is the maximum number of consecutive
pixel with gray-level equal to I at an angle �.

In the present work, the run-length matrices for angles
� ∈ {0◦, 45◦, 90◦, 135◦} where calculated, and their mean value
was used for independency over rotation.

From the run-length matrix the following features can be
defined:

19. Short-run emphasis

SRE =
∑Ng

i

∑Nr

j
QRL(i, j)/j2∑Ng

i

∑Nr

j
QRL(i, j)

(A.19)

20. Long-run emphasis

LRE =
∑Ng

i

∑Nr

j
QRL(i, j)/j2∑Ng

i

∑Nr

j
QRL(i, j)

(A.20)

21. Gray-level non-uniformity

GLNU =
∑Ng

i

[∑Nr

j
QRL(i, j)

]2

∑Ng

i

∑Nr

j
QRL(i, j)

(A.21)

22. Run-length non-uniformity

RLNU =
∑Nr

j

[∑Ng

i
QRL(i, j)

]2∑Ng

i

∑Nr

j
QRL(i, j)

(A.22)

23. Run-percentage

RP =
∑Ng

i

∑Nr

j
QRL(i, j)

P
(A.23)

where P the maximum number of run-lengths Nr.
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