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a b s t r a c t

This work presents the non-symmetric fuzzy means algorithm which is a new methodology for training
Radial Basis Function neural network models. The method is based on a non-symmetric fuzzy partition of
the space of input variables which results to networks with smaller structures and better approximation
capabilities compared to other state-of-the-art training procedures. The lower modeling error and the
smaller size of the produced models become particularly important when they are used in online appli-
cations. This is demonstrated by integrating the model produced by the proposed algorithm in a Model
Predictive Control configuration, resulting in better control performance and shorter computational
times.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Radial Basis Function (RBF) neural networks constitute a special
neural network architecture that has received much attention from
the academic community. A typical RBF network comprises only
one hidden layer of neurons which results to fewer synaptic
weights and in general a less complex structure compared to other
neural network architectures. Typically there are two approaches
for training an RBF network: The first approach aims at determin-
ing all the network parameters in one step using a nonlinear opti-
mization procedure. Following this approach, Sarimveis et al. [19]
developed a special genetic algorithm to auto-configure the struc-
ture of the network and obtain the model parameters. Hefny et al.
[6] introduced a fuzzy neural network which can be considered as
a logical version of RBF networks, where genetic algorithms are
employed as the learning mechanism. Peng et al. [17] proposed a
hybrid forward algorithm for the construction of RBF neural net-
works with tunable nodes, which according to the authors leads
to an improved network performance and reduced memory usage
ll rights reserved.

f Electronics, Technological
aleo 12210, Greece. Tel.: +30
for the network construction. Wedge et al. [22] presented a hybrid
RBF-sigmoid neural network with a three-step training algorithm
that utilizes both global search and gradient descent training. Their
algorithm is intended to identify global features of an input–output
relationship before adding local detail to the approximating func-
tion. As an alternative to these gradient-based procedures, but still
calculating the network parameters in one step, Lazaro et al. [10]
used the Expectation–Maximization algorithm to obtain maximum
likelihood estimates of the RBF network parameters.

The second approach for training an RBF network is to separate
the problem of identifying the network parameters in two steps:
The first step aims at finding the number and locations of the hid-
den node RBF centers, while in the second step the synaptic
weights are determined. As the second step is performed trivially
by linear regression between the outputs of the hidden node and
the real output data, this two-step procedure is usually faster than
optimizing all the RBF network parameters at the same time.

Still, determining the number and the locations of the hidden
node centers is not an easy task and numerous attempts to solve
this problem have been presented in the literature. Among the
most recent ones, Panchapakesan et al. [14] proposed a methodol-
ogy where the locations of the centers are selected using unsuper-
vised methods and then are fined-tuned to decrease the training
error. Jiang et al. [8] used a genetic algorithm to select the
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appropriate network structure in determining the optimal number
of nodes. Zhao and Huang [20] introduced an evolutionary struc-
ture optimization method for selecting the RBF hidden centers
and widths. Sarimveis et al. [18] proposed the fuzzy means algo-
rithm which determines the RBF centers of the network based on
a fuzzy partition of the input space; later an adaptive version of
the algorithm was proposed for modeling time-varying systems
[1]. The main advantage of the algorithm is that it has the ability
to determine both the centers and structure of the network in very
short computational times, while comparisons with other training
methodologies show that the prediction capabilities of the pro-
duced models are similar or superior.

The fuzzy means algorithm selects the hidden node centers by
partitioning the input space to an equal number of fuzzy sets for
each input variable. However, it might be possible to improve
the results in terms of prediction accuracy and/or network size,
by assigning a different number of fuzzy sets to each input vari-
able. The modification of the original method in order to take into
account non-symmetric fuzzy partitions of the input space is not
trivial. The goal of this paper is to investigate this possibility by
using hyper-ellipsoid fuzzy subspaces instead of the hyper-spher-
ical shapes on which the original algorithm was based. Also the
concept of the relative Euclidean distance introduced by Nie [13],
is extended to account for the non-symmetric partition.

The main result of this study is the development of the non-
symmetric fuzzy means algorithm which is a new training. The
algorithm improves the prediction accuracy of the produced mod-
els, while at the same time a significant reduction of the number of
hidden nodes is achieved. Reduced complexity is a desired model
feature, especially when the model is used for real time applica-
tions. In order to demonstrate the benefits of the non-symmetric
algorithm, the proposed method is combined with a standard Mod-
el Predictive Control (MPC) configuration. MPC algorithms make
use of a model of the controlled process in order to estimate the
optimum sequence of control moves that will drive the process
closer to the set-point [7]. Incorporating RBF dynamical models
in such a control configuration is not a new concept. Peng et al.
[15,16] presented a methodology for training RBF-based AutoRe-
gressive models with eXogenuous (ARX) variables and then imple-
mented it in the design of an MPC for nonlinear industrial
processes. In Alexandridis and Sarimveis [2], an adaptive nonlinear
control scheme was introduced, by integrating the symmetric
adaptive fuzzy means algorithm into the MPC framework. The
complete control scheme was then applied successfully to a diges-
ter reactor. The impact of the network size on the computational
time needed for solving the online optimization problem was not
investigated in details, since for the particular application there
was sufficient time between taking two consecutive control ac-
tions. However in applications with fast dynamics, the computa-
tional time for solving the optimization problem is critical. In
such cases it is necessary to find ways to speed up the optimization
task. Bhartiya and Whiteley [3,4] proposed an MPC approach,
where a factorized RBF network serves as the process model. In
their work the factorization of the RBF network increases the com-
putational efficiency of the control algorithm thus helping to solve
the optimization problem faster. Wang et al. [21] applied an MPC
methodology based on RBF networks for the adaptive control of
the air-fuel ratio in a spark ignition engine. Using a reduced Hes-
sian method, they managed to speed up the nonlinear optimization
problem. In this paper we show that utilization of the non-sym-
metric fuzzy means algorithm results to a model with better accu-
racy, which guarantees a better control performance, but also
decreases the computational burden for solving the on-line MPC
optimization problem. This result is verified by applying the pro-
posed MPC configuration to a Continuous Stirred Tank Reactor
(CSTR) model.
The rest of this article is organized as follows: A short introduc-
tion to the general concept of the fuzzy means algorithm is given in
the next section, followed by the presentation of the proposed non-
symmetric modification. Next follows a description of how RBF
models can be integrated within the MPC configuration and an
analysis of the computational complexity of the resulting optimi-
zation problem. Then, two case studies are presented, where the
proposed methodology is applied to benchmark modeling and con-
trol problems and compared with the original version of the fuzzy
means algorithm. In the final section we draw conclusions and set
some directions for future research.

2. The fuzzy means algorithm

The fuzzy means algorithm has been proposed as an alternative
to classical methodologies for selecting the RBF network hidden
node centers, like the k-means algorithm [5,12]. In contrast to
the traditional methodologies, the fuzzy means algorithm has the
ability to determine automatically the size of the network, i.e.
the number of RBF centers, while it proves to be orders of magni-
tude faster. The main idea behind the algorithm is the partition of
the input space into a number of fuzzy sets which is described
next.

Consider a system with N normalized input variables xi, where
i = 1, . . . , N. The case of symmetric partition will be investigated
first, where the domain of each input variable is partitioned into
an equal number of one-dimensional triangular fuzzy sets, c. Each
fuzzy set can be written as:

Ai;j ¼ fai;j; dag; i ¼ 1; . . . ;N; j ¼ 1; . . . ; c ð1Þ

where ai,j is the center element of fuzzy set Ai,j and da is half of the
respective width (due to the symmetric partition all the widths are
equal). This partitioning technique creates a total of cN multi-
dimensional fuzzy subspaces Al, where l = 1, . . . , cN. Each multi-
dimensional fuzzy subspace is generated by combining N one-
dimensional fuzzy sets, one for each input direction. One can define
the center vector al and the side vector da of each fuzzy subspace:

Al ¼ fal; dag ¼ al
1;j1
; al

2;j2
; . . . ; al

N;JN

h i
; ½da; da; . . . ; da|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N

�

8<
:

9=
;;

l ¼ 1; . . . ; cN ð2Þ

where al
i;ji

is the center element of the one-dimensional fuzzy set Ai;ji

that has been assigned to input i. Each one of the produced fuzzy
subspaces is a candidate for becoming an RBF center but only a
few of those will be finally selected. The selection is based on the
idea of the multidimensional membership function lAl ðxðkÞÞ of an
input vector x(k) to a fuzzy subspace Al which is given by Nie [13]:

lAl ðxðkÞÞ ¼ 1� rdlðxðkÞÞ; if rdlðxðkÞÞ 6 1
0; otherwise

(
ð3Þ

where rdl(x(k)) is the Euclidean relative distance between Al and the
input data vector x(k):

rdlðxðkÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

al
i;ji
� xiðkÞ

� �2

vuut =
ffiffiffiffi
N
p

da ð4Þ

Eq. (4) defines a hyper-sphere on the input space with radius equal
to

ffiffiffiffi
N
p

da. The objective of the training algorithm is to select a subset
of fuzzy subspaces as RBF centers so that all the training data are
covered by at least one hyper-sphere. Expressing this requirement
in terms of Eq. (3), the subset of fuzzy subspaces is selected so that
there is at least one fuzzy subspace that assigns a nonzero multidi-
mensional degree to each input training vector. The algorithm that



Fig. 1a. Two dimensional example: Symmetric fuzzy partitioning into five fuzzy
sets for both input variables.

Fig. 1b. Two dimensional example: Non-symmetric fuzzy partitioning into seven
fuzzy sets for x1 and five fuzzy sets for x2.
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is responsible for the selection of this subset is described in [18],
followed by an analysis of its low computational complexity. More
details about fuzzy partitioning can be found in the above
publication.

An example of this type of fuzzy partitioning can be seen in
Fig. 1a, where for visualization purposes a two-dimensional input
space is depicted. The domains of the two input variables x1, x2

are partitioned into five fuzzy sets, thus creating 16 rectangles.
Obviously this symmetric partitioning procedure leads to a square
grid, where the Euclidean relative distance defines a circle with ra-
dius equal to

ffiffiffi
2
p

da. Using more fuzzy sets for each input variable
makes the grid denser and results to the selection of more RBF cen-
ters. The distribution of the candidate centers along the direction
of each input variable is the same as long as the same number of
fuzzy sets is used for all of them. However this restricts the flexi-
bility of the algorithm, since a different partitioning for each input
variable might result in a better network in terms of accuracy and/
or complexity of the model. In the next subsection, the necessary
modifications are presented in order to extend the applicability
of the algorithm to a non-symmetric partitioning of the input
space.

2.1. Non-symmetric fuzzy means

In the case of non-symmetric fuzzy partition, the domain of
each input variable is partitioned into ci fuzzy sets where
i = 1, . . . , N which results to C fuzzy subspaces:

C ¼
YN
i¼1

ci ð5Þ

The widths of the fuzzy sets are different for each input vari-
able, and the fuzzy subspaces are described as follows:

Al ¼ fal; dag ¼ al
1;j1
; al

2;j2
; . . . ; al

N;JN

h i
; da1; da2; . . . ; daN½ �

n o
;

l ¼ 1; . . . ;C ð6Þ

An example of the non-symmetric partition is displayed in
Fig. 1b using again a two-dimensional case. Now, the domain of in-
put variable x1 is partitioned into seven fuzzy sets while the do-
main of x2 is partitioned into five fuzzy sets. The grid defines 24
equal rectangles in the input space and the two edges of each rect-
angle are twice the widths of the respective fuzzy sets da1, da2.

The definitions of the Euclidean relative distance and the multi-
dimensional membership function in Eqs. (3) and (4) are suitable
only for the symmetric partition. In the sequel we will examine
how these definitions can be modified to account for the non-sym-
metric partition. In particular, we will associate an N-dimensional
hyper-ellipse with each fuzzy subspace:

XN

i¼1

ðal
i;ji
� xiðkÞÞ2

ðbiÞ2
¼ 1; l ¼ 1; . . . ;C ð7Þ

where bi is half of the respective ellipse axis for each variable
i = 1, . . . , N. The parameters bi need to be determined, in contrast
to the hyper-sphere for which all the parameters bi i = 1, . . . , N are
equal to 1. A first prerequisite is that the surface of the hyper-ellipse
needs to cross all the vertices of the hyper-rectangle defined by the
fuzzy subspace e.g. in the two-dimensional example it should cross
the four vertices of the rectangle. However this condition is not suf-
ficient to define uniquely the hyper-ellipse since there are infinite
hyper-ellipses that cross all the vertices – a special case of which
is the hyper-sphere of Eq. (4). Among them, we select the one
whose axes are proportional to the edges of the hyper-rectangle,
i.e.:

da1

b1
¼ da2

b2
¼ � � � ¼ daN

bN
ð8Þ

The inclusion of Eq. (8) in the formulation of the problem de-
fines uniquely the hyper-ellipse. It can easily be derived that this
is described by the following equation:

XN

i¼1

al
i;ji
� xiðkÞ

� �2
=NðdaiÞ2

� �
¼ 1 ð9Þ

Fig. 1c depicts the ellipse that is finally formulated in the two-
dimensional case.



Fig. 1c. Two dimensional example: Ellipsoid shaped membership function for non-
symmetric fuzzy partitioning.
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Based on Eq. (9), a new multidimensional membership function
is derived where the relative distance between a fuzzy subspace Al

and the input data vector x(k) is given by:

rdlðxðkÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

al
i;ji
� xiðkÞ

� �2
=NðdaiÞ2

� �vuut ð10Þ
Fig. 2. A graphical representatio
The replacement of the original spherical relative distance
equation with an ellipsoidal one makes the non-symmetric algo-
rithm more flexible, as it gives the user the opportunity to partition
the domain of each input variable in a different way. Thus the
resulting RBFs cover more efficiently the regions of the input space
where input data are available and produce networks with more
accuracy (smaller modeling error) and lower complexity.

After replacing the relative distance equation, the algorithm
proceeds in the same way with the original fuzzy means method-
ology to find the subset of fuzzy subspaces that assign a nonzero
multidimensional degree to all input training vectors.
3. Model Predictive Control using Radial Basis Function models

Typically, MPC controllers make use of a model correlating the
controlled variable with the manipulated one. Then at each dis-
crete time step an optimization problem is formulated, where
the objective is to minimize the difference between the set point
and the predictions of the model. The solution to this problem is
the optimum sequence of control moves that drives the controlled
variable to the set point value. A graphical representation of the
MPC methodology is shown in Fig. 2.

In a typical MPC implementation, the objective function is a
combination of two targets: (a) minimization of the distances be-
tween the predicted output values and the set point and (b) mini-
mization of the control moves:

min
DvðkÞ;Dvðkþ1Þ;...Dvðkþhc Þ

Xhp

i¼1

kHðŷðkþ iÞ � yspÞk2
2 þ

Xhc

i¼0

kXDvðkþ iÞk2
2

ð11Þ

where Dv(k) is the vector containing the control moves at time step
k; H and X are the error and move suppression weights; hc and hp
n of the MPC methodology.



Fig. 3. Integration of RBF model and MPC methodology.

Table 1
Parameters for the MacKey–Glass equation.

Parameter Value

a 0.2
b 0.1
s 30

Table 2
Case Study I: Results on the validation dataset for the symmetric and non-symmetric
fuzzy means algorithm.

Symmetric FM Non-symmetric FM

Fuzzy partition [16 16 16 16 16 16] [9 11 13 9 13 13]
# of RBF centers 20 17
MARE% 0.46 0.23
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are the control and prediction horizons respectively and ysp is the
set point value.

The minimization problem is solved subject to a number of
constraints:

ŷðkþ iÞ ¼ NNðkþ iÞ þ EðkÞ; 1 6 i 6 hp ð12Þ
EðkÞ ¼ yðkÞ � NNðkÞ ð13Þ
vmin 6 vðkþ iÞ 6 vmax; 1 6 i 6 hc ð14Þ
� Dvmax 6 Dvðkþ iÞ 6 Dvmax; 1 6 i 6 hc ð15Þ
Dvðkþ iÞ ¼ 0; hc þ 1 6 i 6 hp ð16Þ

where NN(k) is the RBF network prediction for the time step k and
E(k) is the current error between the actual output measurement
and the model prediction. Eqs. (12) and (13) denote that the mod-
eling error measured at time point k is assumed to be the same over
the entire prediction horizon. Eqs. (14) and (15) pose upper and
lower bounds on the values of the manipulated variables and the
control moves, while Eq. (16) denotes that no control moves are al-
lowed after the end of the control horizon. Fig. 3 shows schemati-
cally how the RBF model and the MPC methodology are integrated.
3.1. Solving the optimization problem – computational complexity

The nonlinear optimization problem defined by Eqs. (11)–(16)
is solved using the sequential quadratic programming (SQP) algo-
rithm included in the fmincon MATLAB function. SQP algorithms
involve the calculation of the cost function (Eq. (11)) several times
during each iteration. The most time consuming part in this calcu-
lation is computation of the RBF model response (Eq. (12)). The
computational burden of the optimization problem increases with
the number of input variables N, the number of times the cost func-
tion is called at each time step k and the number of centers in the
RBF model. The importance of reducing the number of hidden node
centers becomes apparent, especially for large scale models involv-
ing many input variables.
4. Case Study I: application of the new methodology to the
Mackey–Glass time series

The proposed non-symmetric algorithm was tested by applying
it to the prediction of the well-known Mackey–Glass time series
[11]. The Mackey–Glass is a chaotic time series that has been used
extensively for evaluating neural network models; for the discrete
case, it arises from the following difference equation:

xðt þ 1Þ ¼ ð1� bÞxðtÞ þ a
xðt � sÞ

ð1þ x10ðt � sÞÞ ð17Þ

The objective here is to build a model that predicts the next va-
lue for the Mackey–Glass time series, based on the six previous
ones:

xðtÞ ¼ RBFðxðt � 1Þ; xðt � 2Þ; . . . ; xðt � 6ÞÞ ð18Þ

Using the values of the parameters shown in Table 1, a set of
4000 values was generated. The first 1000 were discarded, whereas
the next 1500 were used for training and the rest for validating the
produced RBF models. For comparison purposes the original sym-
metric fuzzy means algorithm was applied to partitions from 4
to 20 fuzzy sets for all input variables. In the case of the non-sym-
metric algorithm, an exhaustive search was also performed testing
all combinations of partitions ranging from 4 to 20 fuzzy sets for
each input variable. The best results for both algorithms are pre-
sented in Table 2, where it can be seen that the non-symmetric
algorithm outperforms the symmetric one in terms of smaller
Mean Absolute Relative Error% (MARE%) and fewer RBF centers.
5. Case Study II: MPC of a Continuous Stirred Tank Reactor
(CSTR)

This section presents an example where the non-symmetric
fuzzy means algorithm is integrated as a modeling algorithm to a
typical MPC configuration aiming to control a simulated system.
The simulation involves a nonisothermal CSTR where the following



Table 4
Case Study II: Results on the validation datasets for the symmetric and non-
symmetric fuzzy means algorithm.

CA model T model

Symmetric
FM

Non-
symmetric
FM

Symmetric
FM

Non-
symmetric
FM

Fuzzy partition [14 14 14] [12 8 9] [14 14 14] [6 15 18]
# of RBF centers 76 37 76 46
MARE% 0.84 0.53 0.16 0.12
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exothermal irreversible reaction between sodium thiosulfate and
hydrogen peroxide is taking place:

2Na2S2O3 þ 4H2O2 ! Na2S3O6 þ Na2SO4 þ 4H2O ð19Þ

This process is described by the following mass and energy bal-
ances [9]:

dCA

dt
¼ F

V
ðCA;in � CAÞ � 2ko exp � E

RT

� �
C2

A

dT
dt
¼ F

V
ðTin � TÞ þ 2

ð�DHÞR
qcp

ko exp � E
RT

� �
C2

A �
UA

Vqcp

ðT � TjÞ

ð20Þ

where V is the volume of the CSTR; (DH)R is the heat of the reaction;
�E/R, ko, cp, q are constants of the reaction and the reactants; F is
the flow rate into the reactor; CA,in is the inlet concentration of
the reactant Na2S2O3; CA is the concentration of Na2S2O3 inside
the reactor; Tin is the inlet temperature; T is the temperature inside
the reactor; Tj is the temperature of the coolant and UA is the overall
heat-transfer coefficient between the cooling coil and the reactor
contents. The values of the process parameters are shown in
Table 3.

It should be noted that this type of CSTR has normally three
steady state points, an upper and a lower one which are stable,
and a medium one which is unstable. Though it is relatively easy
to control the CSTR around the upper or lower steady state point,
controlling the CSTR over the whole operating range which in-
cludes the unstable steady state point is a rather challenging task.

The CSTR was simulated by solving the system of ODEs in Eq.
(20). The objective was to apply an MPC configuration in order to
control concentration CA using the temperature of the coolant Tj

as the manipulated variable. The MPC configuration requires a dy-
namic model that correlates the output variable CA with the input
variable Tj. The presence of multiple steady states makes it impos-
sible to approximate the system dynamics over the whole operat-
ing region using a model of the type:

CAðkÞ ¼ RBFðTjðk� 1Þ; Tjðk� 2Þ; . . . ; Tjðk� iÞÞ ð21Þ

i.e. a model using as inputs only past values of Tj. The reason is that
for the same sequence of inputs Tj(k � 1), Tj(k � 2), . . . , Tj(k � i),
there are more than one possible values of the output variable
CA(k), depending on which steady state the CSTR is nearest at that
time point.

In order to circumvent this problem, an ARX (AutoRegressive
with eXogenous inputs) type model was chosen, where the current
concentration CA(k) is correlated with the previous value of the
coolant temperature Tj(k � 1), but also with the previous values
of the two state variables, i.e. the concentration CA(k � 1) and the
temperature inside the reactor T(k � 1):

CAðkÞ ¼ RBFðTjðk� 1Þ;CAðk� 1Þ; Tðk� 1ÞÞ ð22Þ
Table 3
Process parameter values for the CSTR.

Process parameter Value

V 100 l

UA 20,000 J/s K
H 1000 g/l
Cp 4.2 J/g K
�(DH)R 596,619 J/mol
ko 6.85E+11 l/s mol
E 76534.704 J/mol
R 8.314 J/mol K
F 20 l/s
Tj 275 K
CA,in 1 mol/l
The introduction of such a model – using the previous values of
the two state variables as inputs – complicates the calculation of
the future model predictions throughout the prediction horizon.
At each discrete time step k, where the optimization problem
(Eq. (11)) is formulated and solved, the model (Eq. (22)) is used
to generate predictions for the next hp time steps. However in or-
der to calculate the predictions beyond the first future time in-
stance, e.g. CA(k + 2), the values of both state variables during the
previous time step CA(k + 1) and T(k + 1) are needed as inputs to
the model. Therefore, an additional model is needed to predict
the dynamic evolution of the second state variable:

TðkÞ ¼ RBFðTjðk� 1Þ;CAðk� 1Þ; Tðk� 1ÞÞ ð23Þ

In order to generate data for training the two RBF models, the
CSTR was excited by changing the coolant temperature Tj every
1 s, within the limits 0–500. Using the described configuration,
50,000 data points were collected from the CSTR. The data points
were split into a training dataset of 35,000 data points and a vali-
dation one of 15,000 data points. For comparison purposes, both
the original version of the symmetric fuzzy means and the non-
symmetric extension were applied. As in the Mackey–Glass exam-
ple, the original symmetric fuzzy means algorithm was applied to
partitions from 4 to 20 fuzzy sets for all input variables, while for
the non-symmetric algorithm, an exhaustive search was per-
formed testing all combinations of partitions ranging from 4 to
20 fuzzy sets for each input variable. Table 4 presents the best re-
sults obtained using the symmetric and the non-symmetric algo-
rithms. It can be seen that the best networks produced by the
non-symmetric algorithm outperform the ones generated by the
symmetric fuzzy partition in terms of lower MARE%. Moreover,
the lower modeling error is accompanied by a significant decrease
in the number of RBF centers. To be more specific, the RBF net-
works produced by the non-symmetric algorithm contain only 37
and 46 centers for the CA and T models respectively (which corre-
sponds to a reduction of 51% and 39% respectively, compared to the
best networks trained with a symmetric fuzzy partition).

In order to illustrate the combined benefits of the smallest mod-
eling error and the reduction in RBF centers, the models trained
with the two methodologies were incorporated into the MPC con-
figuration described in the previous section, resulting in two differ-
ent control schemes. The values of the operational parameters used
by the MPC schemes are shown in Table 5. The controllers were
Table 5
Operational parameters used by both MPC schemes.

Controller parameter Value

X 1
H 700
hc 4
hp 12
vmin 150
vmax 350
Dvmax 100
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then applied to two test cases. In the first case, the objective is to
drive the CSTR through the three steady state points, thus testing
whether the controllers are capable of controlling the reactor
throughout its operating range. The CSTR is initiated at a concen-
tration CA equal to 0.2 which corresponds to the lower steady state
point and then a step change in the set-point from 0.2 to 0.95, i.e.
the upper stead state point is introduced. After the CSTR reaches
the new set point, at time point 100 a new step change is applied,
leading to the middle unstable steady state point (0.6). The re-
sponses are depicted in Fig. 4a while Fig. 4b presents the computa-
tional times needed by the two schemes to solve the optimization
problem at each discrete time instance and Fig. 4c gives the respec-
tive control moves. The dynamic response of the controller using
the non-symmetric algorithm while attempting to track the first
set point change is slightly better as it reaches faster the new set
point with fewer oscillations. The superiority of the scheme based
on the non-symmetric algorithm becomes more apparent during
the second set point change towards the unstable steady state
point. The controller using the non-symmetric algorithm manages
to reach the set point, taking advantage of the more accurate
model it uses for prediction, while the controller using the sym-
metric algorithm totally misses the set point, as it gets stuck to
the lower stable steady state point. The failure of the symmetric
controller to reach the set point can be explained by noticing that
the initial modeling error for the two state variables is propagated
throughout the prediction horizon. The initial error is amplified be-
cause the model predictions at each time step are used for calculat-
ing the predictions in the subsequent time instance.

Another important observation is that the time needed to solve
the optimization problem in the non-symmetric MPC scheme is
considerably lower compared to the time needed for the symmet-
ric scheme, which is obviously induced by the reduction in the size
of networks generated by the non-symmetric algorithm. The
reduction in computational time is more significant at the time in-
stances that follow the set point changes. It should be noted that at
these particular time instances the optimization problems are
harder to solve, because there are considerable differences be-
tween the optimal solutions at consecutive time steps and thus
no good initial guesses are available.



Table 6
Sum of Squared Error (SSE) for the two algorithms during the disturbance rejection
test.

MPC with symmetric FM MPC with non-symmetric FM

SSE 0.1343 0.0817
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In the second case the set point was fixed at 0.20 and unknown
disturbances were introduced to the inlet flow F. The disturbances
were assumed to follow a normal distribution with mean equal to
20 and standard deviation equal to 3.5. The results are summa-
rized in Figs. 5a–5c where the responses of the two control
schemes, the associated computational times and the control
moves are depicted, and in Table 6, showing the Sum of Squared
Errors (SSE) for the two controllers. Once again, the MPC scheme
based on the non-symmetric fuzzy means algorithm proves more
accurate, featuring an SSE that is 39% lower compared to the con-
troller based on the symmetric algorithm, while at the same time
it proves to be considerably faster in solving the optimization
problem.
6. Conclusions

This paper presents a new algorithm that addresses the prob-
lem of calculating the number and locations of the hidden node
centers, in the process of training an RBF network. The new algo-
rithm relies on a fuzzy partition of the input space where each in-
put variable is allowed to be partitioned into a different number
of fuzzy sets. This results to a non-symmetric fuzzy partition of
the input space. A hyper-ellipsoid equation is employed to define
a new multidimensional membership function to a fuzzy sub-
space. The new algorithm improves the efficiency of the original
fuzzy means algorithm in terms of accuracy, but also produces
networks of lower complexity. The application of the proposed
methodology in developing dynamic RBF models for a benchmark
modeling problem, illustrated the efficiency of the new method.
The advantages of the method to produce more accurate and
smaller in size RBF networks are highly appreciated when the
RBF model is integrated in online control applications where both
model accuracy and computational time are critical issues. In or-
der to demonstrate this, a model produced by the non-symmetric
fuzzy means algorithm was incorporated in an MPC framework
and was compared with a model produced by the symmetric fuz-
zy means algorithm. The proposed approach not only improves
considerably the performance of the controller, but also solves
the on-line optimization problem in considerably lower computa-
tional times.
Acknowledgment

Alex Alexandridis gratefully acknowledges financial support
from the Greek State Scholarships Foundation.

References

[1] Alexandridis A, Sarimveis H, Bafas G. A new algorithm for online structure and
parameter adaptation of RBF networks. Neural Networks 2003;16:1003–17.

[2] Alexandridis A, Sarimveis H. Nonlinear adaptive model predictive control
based on self-correcting neural network models. AICHE J
2005;51(9):2495–506.

[3] Bhartiya S, Whiteley JR. Factorized approach to nonlinear MPC using a radial
basis function model. AIChE J 2001;47:358–68.

[4] Bhartiya S, Whiteley JR. Benefits of factorized RBF-based NMPC. Comput Chem
Eng 2002;26:1185–99.

[5] Darken C, Moody J. Fast adaptive k-means clustering: some empirical results.
In: IEEE INNS international joint conference on neural networks; proceedings,
vol. 2; 1990. p. 233–8.

[6] Hefny HA, Bahnasawi AA, Abdel Wahab AH, Shaheen SI. Logical radial basis
function networks a hybrid intelligent model for function approximation. Adv
Eng Softw 1999;30:407–17.

[7] Hu Z, Chan CW, Huang GH. Model predictive control for in situ bioremediation
system. Adv Eng Softw 2006;37(8):514–21.

[8] Jiang N, Zhao Z, Ren L. Design of structural modular neural networks with
genetic algorithm. Adv Eng Softw 2003;34(1):17–24.

[9] Kazantzis N, Kravaris C. Synthesis of state feedback regulators for nonlinear
processes. Chem Eng Sci 2000;55:3437.

[10] Lazaro M, Santamarıa M, Pantaleon C. A new EM-based training algorithm for
RBF networks. Neural Networks 2003;16:69–77.

[11] Mackey MC, Glass L. Oscillation and chaos in physiological control systems.
Science 1977;197:287–9.

[12] MacQueen J. Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, UC Berkeley Press; 1967. p. 281–97.

[13] Nie J. Fuzzy control of multivariable nonlinear servomechanisms with explicit
decoupling scheme. IEEE Trans Fuzzy Syst 1997;5:304.

[14] Panchapakesan C, Palaniswami M, Ralph D, Manzie C. Effects of moving the
centers in an RBF network. IEEE Trans Neural Networks 2002;13(6):1299–307.

[15] Peng H, Ozaki T, Haggan-Ozaki V, Toyoda Y. A parameter optimization method
for radial basis function type models. IEEE Trans Neural Networks
2003;14(2):432–8.

[16] Peng H, Nakano K, Shioya H. Nonlinear predictive control using neural nets-
based local linearization ARX model – stability and industrial application. IEEE
Trans Control Syst Technol 2007;15(1):130–43.

[17] Peng JX, Li K, Huang DS. A hybrid forward algorithm for RBF neural network
construction. IEEE Trans Neural Networks 2006;17(6):1439–51.

[18] Sarimveis H, Alexandridis A, Tsekouras G, Bafas G. A fast and efficient
algorithm for training radial basis function neural networks based on a fuzzy
partition of the input space. Ind Eng Chem Res 2002;41:751–9.

[19] Sarimveis H, Alexandridis A, Mazarakis S, Bafas G. A new algorithm for
developing dynamic radial basis function neural network models based on
genetic algorithms. Comput Chem Eng 2004;28(1–2):209–17.

[20] Zhao ZQ, Huang DS. A mended hybrid learning algorithm for radial basis
function neural networks to improve generalization capability. Appl Math
Modell 2007;31:1271–81.

[21] Wang SW, Yu DL, Gomm JB, Page GF, Douglas SS. Adaptive neural network
model based predictive control for air–fuel ratio of SI engines. Eng Appl Artif
Intell 2006;19:189–200.

[22] Wedge D, Ingram D, McLean D, Mingham C, Bandar Z. On global–local artificial
neural networks for function approximation. IEEE Trans Neural Networks
2006;17(4):942–52.


	A Radial Basis Function network training algorithm using a non-symmetric  partition of the input space – Application to a Model Predictive Control configuration
	1 Introduction
	2 The fuzzy means algorithm
	2.1 Non-symmetric fuzzy means

	3 Model Predictive Control using Radial Basis Function models
	3.1 Solving the optimization problem – computational complexity

	4 Case Study I: application of the new methodology to the Mackey–Glass time series
	5 Case Study II: MPC of a Continuous Stirred Tank Reactor (CSTR)
	6 Conclusions
	Acknowledgment
	References


