
European Journal of Operational Research 201 (2010) 821–827
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Stochastics and Statistics

Reliability analysis of a two-unit general parallel system
with ðn� 2Þ warm standbys

Effie Papageorgiou *, George Kokolakis
Department of Mathematics, National Technical University of Athens, 15780 Athens, Greece

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 November 2007
Accepted 11 April 2009
Available online 3 May 2009

Keywords:
Reliability
Redundancy
Warm standbys
Recursive probabilistic analysis
General distributions
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.04.016

* Corresponding author.
E-mail addresses: efipapag@math.ntua.gr (E. Papag
A parallel ð2;n� 2Þ-system is investigated here where two units start their operation simultaneously and
any one of them is replaced instantaneously upon its failure by one of the ðn� 2Þ warm standbys. We
assume availability of n non-identical, non-repairable units. The unit-lifetimes in full operational mode
and in partial operational mode have general distribution functions Gi and Hi ði ¼ 1; . . . ;nÞ respectively.
The system reliability is evaluated by recursive relations.
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1. Introduction

Redundant systems have attracted the attention of several researchers working in the field of reliability theory. There are two main cat-
egories of redundant standby systems, namely cold and warm. In the first category many workers, including Murari and Goel [13], Gupta
and Goel [5], Goel et al. [2] and Gupta and Chaudhary [7], have investigated the two-unit standby system models assuming that, on the
failure of one unit, it is replaced by the standby unit instantaneously. Gupta and Kishan [8] consider situations of two-unit system where
the standby unit does not operate instantaneously but a fixed preparation time is required to put standby and repaired units into operation.
Several workers including Gopalan et al. [4], Gupta and Goel [6], Murari and Maruthachalam [12], have analyzed two-unit system models
under a variety of assumptions using the regenerative point technique. Recently, Lam [11] and Zhang and Wang [18], consider cold standby
repairable systems applying the geometric process repair model. In all these system models it is assumed that the lifetimes are uncorre-
lated random variables. The structure of these system models allows the operation of only one unit during the repair time of the other.

Papageorgiou and Kokolakis [14] have investigated a two-unit parallel system supported by ðn� 2Þ cold standbys. The unit-lifetimes are
considered random, not necessarily independently distributed, with a general joint distribution F: The main result there is the analytic
evaluation of the system reliability, unlike most earlier results which provide bounds under partial information about the joint pdf, or refer
to specific independent unit-lifetime distributions. Papageorgiou and Kokolakis [15] extend the above main result by deriving a reliability
formula which is efficient and easy to use for simulation techniques.

Within the second category of warm standby systems several workers including Wang et al. [17] and Ke and Wang [10] have analyzed a
K out of M þW warm standby system. In the former, the system constitutes of M operating machines and W standbys together with a
repairable service station. Failure and service times are exponentially distributed. In the later, there are R repairmen and the balking
and reneging of units permitted. Failure and repair times are considered exponentially distributed. Other workers including Kalpakam
and Hameed [9] studied the asymptotic behavior of the residual lifetime distribution of a two-unit warm standby redundancy system sup-
ported by a single repair facility. They conclude in this case that the asymptotic distribution is always exponential no matter what the indi-
vidual distributions of the units lifetimes and repair times are.

The availability and reliability of a n-unit system with ðn� 1Þ warm standbys and a single repair facility are considered by Gopalan [3].
The failure times are assumed exponentially distributed while the pdf of the repair time is arbitrary. Srinivasan and Subramanian [16] ana-
lyzed a three-unit system consisting of a single unit working online and two warm standbys together with a single repair facility. The fail-
ure time of the online unit and the repair time have general distributions while in standby situation the failure rate is constant.
ll rights reserved.
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Nomenclature

Ui the ith unit introduced into the system
T system lifetime
c fixed required period of system operation
Ti lifetime of ith unit in full operation mode
Tip lifetime of ith unit in partial operation mode
gið�Þ;Gið�Þ PDF and CDF of the ith unit-lifetime in full operation mode
hið�Þ;Hið�Þ PDF and CDF of the ith unit-lifetime in partial operation mode
Fið�Þ CDF of the ð2; i� 2Þ system lifetime
Fið�Þ reliability function of the ð2; i� 2Þ system
Si starting time of full operation mode of the ith unit
Ri remaining lifetime of the ith unit
n number of available non-repairable units
S the event fT P cg
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Here, we examine a related problem. It refers to a parallel ð2;n� 2Þ-system, where two units start their operation simultaneously and
the unit that fails first is replaced instantaneously upon its failure by one of the ðn� 2Þ warm standbys. The main difference of the model
we examine in this paper is that we have available a fixed number of n non-repairable units, the lifetimes of which have general distribu-
tion functions Gi and Hi ði ¼ 1; . . . ;nÞ, when in full operational mode and in partial operational mode respectively. Like in Papageorgiou and
Kokolakis [14], our system has in parallel operation two units until, at least, the entrance of the last available standby unit. The difference
from the above is that here we have warm standbys in the place of cold standbys there. Our main result is the evaluation of the system
reliability by using recursive analysis.

2. System description

The problem of the successful control of a process by a two-unit parallel system supported by warm standbys is considered in this pa-
per. Here, we suppose that there is available a fixed number of n non-repairable and non-identical units. Let Ti and Tip ði ¼ 1; . . . ;nÞ denote
the time to failure for the ith unit when fully energized and partially energized, respectively. The unit-lifetimes Ti ði ¼ 1; . . . ;nÞ are random
independently distributed with general distributions Gi. Similarly, the unit-lifetimes Tip ði ¼ 1; . . . ;nÞ are random independently distributed
with general distributions Hi. We expect that Tip > Ti since the rate of the deterioration is less when the unit is partially energized than
when fully energized, specifically we assume GiðtÞ > HiðtÞ for all t > 0. The process has a fixed duration c. The control of the process is con-
sidered successful when the system is up, i.e. at least one of its two units is in operation state, during the required time interval c. The
process is initially controlled by two units and the remaining (n� 2) units are warm standbys. The two initial units start their fully ener-
gized operation simultaneously, i.e. at time t ¼ S1 ¼ S2 ¼ 0 and the ðn� 2Þ standby units start their partially energized operation at the
same time. The fully energized unit that fails first is replaced upon its failure instantaneously by a warm standby, i.e. the third unit in
the system starts its fully energized operation at time S3 ¼minfT1; T2g, provided that it has not failed before that time as a partially ener-
gized unit. Similarly the forth unit in the system starts its fully energized operation upon the failure time of the first failed unit among the
two working ones, i.e. at time S4 ¼minfmaxfT1; T2g; S3 þ R3g, provided it has not failed before, where R3 denotes the third unit’s remaining
lifetime. For a better understanding in Fig. 1 we present a few cases of a (2,2)-parallel system failure.

In general, the ith unit in the system starts its full operation at time Si ¼minfmaxfT1; T2; S3 þ R3; . . . ; Si�2 þ Ri�2g; Si�1 þ Ri�1g; provided
that has not failed before and it works in parallel with the fully energized working one. Thus, the times Si ði ¼ 3;4; . . . ;nÞ are random, and
the process is simultaneously controlled by two working units until, at least, the entrance of the last available unit. The system fails when
all units fail and the system reliability depends entirely on the distributions of unit-lifetimes.

The model analyzed here is general and could be applicable in a number of real life situations such as emergency power generators and
navigator components. It is particulary important in cases where low power consumption is mandatory, such as in space craft systems.

3. Model analysis

Let T be the system lifetime and S the event of the successful control of the process during the required period of time c, i.e.
S ¼ fT P cg. Let also Ti ði ¼ 1; . . . ;nÞ be the unit-lifetimes in fully operational mode. These are considered independently distributed with
distribution functions Gi ði ¼ 1; . . . ;nÞ.

The remaining time Ri of the unit Ui that has survived up to time X, in partially energized mode, is given by Ri ¼ Ti � G�1
i ðHiðXÞÞ in fully

operational mode. This is based on the following argument cf. Blischke and Murthy [1]. The unit Ui that has survived for a period X in par-
tially energized mode is equivalent to it surviving for a period Z in fully energized mode, with the quantities X and Z being related by
GiðZÞ ¼ HiðXÞ. Thus the effective age is Z ¼ G�1

i ðHiðXÞÞ or, equivalently, Z ¼ G�1
i ðHiðXÞÞ.

From the above description it follows that the system is non-stop functioning with two units in full operation mode until, at least, the
entrance of the last available warm standby unit that has survived in partial operation mode up to time Sn < c. We are interested in eval-
uating the system reliability P½S� ¼ P½T P c�.

We will derive a recursive relation to evaluate P½S� for any number, n, of independent Gi distributed lifetimes (i ¼ 1; . . . ;n).
Here, we have:
S1 ¼ S2 ¼ 0;
S3 ¼minfT1; T2g;



 

(e) (f)

(d)(c)

(b)(a)

Fig. 1. Units U3 and U4 start their partial energized operation at time t ¼ 0 and their fully energized operation upon the failure time of: (a) U1 and U2, (b) U2 and U1, (c) U1 and
U3, and (d) U2 and U3, respectively. Unit U4 starts its fully energized operation upon the failure time of the (e) U1 and (f) U2 while unit U3 has failed before as a partially
energized unit. The process is not successfully controlled for the required time t ¼ c. The solid line represents full unit operation and the dotted line partial operation.
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and in general for i P 4,
Si ¼minfmaxfT1; T2;R3 þ S3; . . . ;Ri�2 þ Si�2g;Ri�1 þ Si�1g ði ¼ 4; . . . ; nÞ: ð1Þ
Let us define now the following random variables:
Mi ¼maxfmaxfT1; T2;R3 þ S3; . . . ;Ri�2 þ Si�2g;Ri�1 þ Si�1g ði ¼ 4; . . . ;nÞ; ð2Þ
and
M2 ¼ T1 and M3 ¼maxfT1; T2g:
Then, for the system lifetime, we have:
T ¼maxfT1; T2;R3 þ S3; . . . ;Rn þ Sng ¼ Mnþ1:
If we put
Vi ¼ Ri þ Si ði ¼ 2; . . . ;nÞ; ð3Þ
with R2 ¼ T2 and S2 ¼ 0, we have
Si ¼minfMi�1;Vi�1g ði ¼ 3; . . . ;nÞ;
and
Mi ¼maxfMi�1;Vi�1g ði ¼ 3; . . . ;nÞ:
To clarify the problem we evaluate the above probability with n = 3 and 4.

3.1. (2,1)-System

We first deal with the case n ¼ 3. Here, the units U1 and U2 are fully energized and the unit U3 is partial energized when the system is
first put in use. Let Ti be the lifetimes of the units Ui ði ¼ 1;2Þ, respectively. Let S3 denote the time to failure of the first failed unit, so
S3 ¼minfT1; T2g. At this time the third unit U3 starts its fully energized operation in the system, provided that it has not failed before.
The (2,1)-system lifetime is:
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T ¼maxfT1; T2;V3g ¼maxfmaxfT1; T2g;R3 þ S3g ¼maxfM3;R3 þ S3g ¼maxfM3;V3g;
with cdf
F3ðtÞ ¼ P½maxfM3;R3 þ S3g 6 t� ¼ P½fM3 6 tgfR3 þ S3 6 tg� ¼
Z
f06s36m36tg

P½0 6 R3 6 t � s3jS3 ¼ s3;M3 ¼ m3�dK2ðs3;m3Þ;
where K2ðs3;m3Þ the joint cdf of the quantities S3 ¼minfT1; T2g and M3 ¼ maxfT1; T2g. Specifically we have
K2ðs3;m3Þ ¼ P½S3 6 s3;M3 6 m3� ¼ Gðs3Þð2Gðm3Þ � Gðs3ÞÞ:

For the third unit’s remaining lifetime R3 we have either R3 ¼ T3 � G�1
3 ðH3ðs3ÞÞ, provided that has not failed before s3, or R3 ¼ 0, when

T3p 6 s3. Thus we have:
F3ðtÞ ¼
Z
f06s36m36tg

fP½R3 ¼ 0jS3 ¼ s3;M3 ¼ m3� þ P½0 < R3 6 t � s3jS3 ¼ s3;M3 ¼ m3�gdK2ðs3;m3Þ

¼
Z
f06s36m36tg

fP½T3p 6 s3� þ P½0 < R3 6 t � s3jS3 ¼ s3�gdK2ðs3;m3Þ;
since the third unit’s remaining lifetime depends only on S3. We have therefore,
F3ðtÞ ¼
Z
f06s36m36tg

fH3ðs3Þ þ P½0 < T3 � G�1
3 ðH3ðs3ÞÞ 6 t � s3jS3 ¼ s3�gdK2ðs3;m3Þ

¼
Z
f06s36m36tg

fH3ðs3Þ þ P½G�1
3 ðH3ðs3ÞÞ < T3 6 t � s3 þ G�1

3 ðH3ðs3ÞÞjS3 ¼ s3�gdK2ðs3;m3Þ

¼
Z
f06s36m36tg

fH3ðs3Þ þ G3ðt � s3 þ G�1
3 ðH3ðs3ÞÞÞ � G3ðG�1

3 ðH3ðs3ÞÞÞgdK2ðs3;m3Þ

¼
Z
f06s36m36tg

G3ðt � s3 þ G�1
3 ðH3ðs3ÞÞÞdK2ðs3;m3Þ: ð4Þ
3.2. (2,2)-System

For n ¼ 4 we have:
T ¼maxfT1; T2;R3 þ S3;R4 þ S4g ¼maxfmaxfmaxfT1; T2g;R3 þ S3g;R4 þ S4g ¼maxfM4;V4g;
and similarly its cdf
F4ðtÞ ¼ P½maxfM4;V4g 6 t� ¼ P½fM4 6 tgfR4 þ S4 6 tg� ¼
Z
f06s46m46tg

G4ðt � s4 þ G�1
4 ðH4ðs4ÞÞÞdK3ðs4;m4Þ; ð5Þ
where K3 the joint cdf of the quantities S4 and M4. This will be evaluated by a recursive relation according to the Theorem presented in the
next section.

3.3. General case

We will evaluate the system lifetime cdf in the general case of n-units. This is provided by a recursive relation as the following theorem
states.

Theorem 1. The system reliability is
FiðtÞ ¼ 1� FiðtÞ ¼ 1�
Z
f06si6mi6tg

Giðt � si þ G�1
i ðHiðsiÞÞÞdKi�1ðsi;miÞ;
where Ki�1ðsi;miÞ is the joint cdf of the random variables Si and Mi ði ¼ 3; . . . ;nÞ, and it is given by:
Ki�1ðsi;miÞ ¼ Li�2ðsi;miÞ þ Li�2ðmi; siÞ � Fi�1ðsiÞ;
where Li�1ðmi;v iÞ is the joint cdf of the random variables Mi and Vi; ði ¼ 3; . . . ;nÞ, given by:
Li�1ðmi; v iÞ ¼
Z
fmi�16v i ;mi�16v i�16mig

Giðv i �mi�1 þ G�1
i ðHiðmi�1ÞÞÞdLi�2ðmi�1;v i�1Þ

þ
Z
fv i�16v i ;v i�16mi�16mig

Giðv i � v i�1 þ G�1
i ðHiðv i�1ÞÞÞdLi�2ðmi�1;v i�1Þ:
Proof. Firstly, we will derive a formula to determine the joint cdf of the random variables Mi and Vi; namely Li�1; ði ¼ 3; . . . ;nÞ.
Li�1ðmi; v iÞ ¼ P½Mi 6 mi;Vi 6 v i� ¼ P½fmaxfMi�1;Vi�1g 6 mig � fRi þ Si 6 v ig� ¼ P½fmaxfMi�1;Vi�1g 6 mig
� fRi þminfMi�1;Vi�1g 6 v ig� ¼ P½fmaxfMi�1;Vi�1g 6 mig � fRi þminfMi�1;Vi�1g 6 v ig � fMi�1 6 Vi�1g�
þ P½fmaxfMi�1;Vi�1g 6 mig � fRi þminfMi�1;Vi�1g 6 v ig � fMi�1 > Vi�1g�:
If now Mi�1 6 Vi�1 then Mi ¼ Vi�1; Si ¼ Mi�1 and if Mi�1 > Vi�1 then Mi ¼ Mi�1; Si ¼ Vi�1. Thus, the cdf Li�1ðmi; v iÞ can be written:
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Li�1ðmi;v iÞ ¼ P½fVi�1 6 mig � fRi þMi�1 6 v ig � fMi�1 6 Vi�1g� þ P½fMi�1 6 mig � fRi þ Vi�1 6 v ig � fMi�1 > Vi�1g� ¼ P½fVi�1 6 mig
� fTi � G�1

i ðHiðmi�1ÞÞ 6 v i �Mi�1g � fMi�1 6 Vi�1g� þ P½fMi�1 6 mig � fTi � G�1
i ðHiðv i�1ÞÞ 6 v i � Vi�1g

� fMi�1 > Vi�1g� ¼ P½fVi�1 6 mig � fTi 6 v i �Mi�1 þ G�1
i ðHiðmi�1ÞÞg � fMi�1 6 Vi�1g� þ P½fMi�1 6 mig

� fTi 6 v i � Vi�1 þ G�1
i ðHiðv i�1ÞÞg � fMi�1 > Vi�1g�
and therefore
Li�1ðmi;v iÞ ¼
Z
fmi�16v i ;mi�16v i�16mig

Giðv i �mi�1 þ G�1
i ðHiðmi�1ÞÞÞdLi�2ðmi�1;v i�1Þ

þ
Z
fv i�16v i ;v i�16mi�16mig

Giðv i � v i�1 þ G�1
i ðHiðv i�1ÞÞÞdLi�2ðmi�1;v i�1Þ: ð6Þ
Since M2 ¼ T1;V2 ¼ T2 and the quantities T1; T2 are independent we have:
L1ðm2;v2Þ ¼ P½M2 6 m2;V2 6 v2� ¼ P½T1 6 m2; T2 6 v2� ¼
Z m2

0

Z v2

0
gðt1; t2Þdt2dt1 ¼

Z m2

0

Z v2

0
g1ðt1Þg2ðt2Þdt2dt1: ð7Þ
We can now use the joint cdf Li�1 to find the joint cdf Ki�1 of the random variables Si and Mi ði ¼ 3; . . . ;nÞ. Specifically, we have:
Ki�1ðsi;miÞ ¼ P½Si 6 si;Mi 6 mi� ¼ P½Mi 6 mi� � P½Si > si;Mi 6 mi� ¼ P½maxfMi�1;Vi�1g 6 mi� � P½si < Mi�1 6 mi; si < Vi�1 6 mi�
¼ Fi�1ðmiÞ � Li�2ðmi;miÞ þ Li�2ðsi;miÞ þ Li�2ðmi; siÞ � Li�2ðsi; siÞ:
Since we have FiðtÞ ¼ P½maxfMi;Vig 6 t� ¼ P½Mi 6 t;Vi 6 t� ¼ Li�1ðt; tÞ, we get:
Ki�1ðsi;miÞ ¼ Li�2ðsi;miÞ þ Li�2ðmi; siÞ � Fi�1ðsiÞ ði ¼ 3; . . . ; nÞ: ð8Þ
With the cdf’s Li�2 and Ki�1 known, we may now proceed to derive a recursive formula for the ð2; i� 2Þ- system cdf Fi; ði ¼ 3; . . . ;nÞ.
FiðtÞ ¼ P½maxfMi;Ri þ Sig 6 t� ¼ P½fMi 6 tgfRi þ Si 6 tg�

¼
Z
f06si6mi6tg

fP½Ri ¼ 0jSi ¼ si;Mi ¼ mi� þ P½0 < Ri 6 t � sijSi ¼ si;Mi ¼ mi�gdKi�1ðsi;miÞ

¼
Z
f06si6mi6tg

fP½Tip 6 si� þ P½0 < Ri 6 t � sijSi ¼ si�gdKi�1ðsi;miÞ

¼
Z
f06si6mi6tg

fHiðsiÞ þ P½0 < Ti � G�1
i ðHiðsiÞÞ 6 t � sijSi ¼ si�gdKi�1ðsi;miÞ

¼
Z
f06si6mi6tg

fHiðsiÞ þ P½G�1
i ðHiðsiÞÞ < Ti 6 t � si þ G�1

i ðHiðsiÞÞjSi ¼ si�gdKi�1ðsi;miÞ

¼
Z
f06si6mi6tg

fHiðsiÞ þ Giðt � si þ G�1
i ðHiðsiÞÞÞ � GiðG�1

i ðHiðsiÞÞÞgdKi�1ðsi;miÞ
and thus
FiðtÞ ¼
Z
f06si6mi6tg

Giðt � si þ G�1
i ðHiðsiÞÞÞdKi�1ðsi;miÞ: � ð9Þ
Remark 1. An other way to evaluate Fi could be to use the relation FiðtÞ ¼ Li�1ðt; tÞ but, the evaluation of Li�1ðt1; t2Þ, instead of Ki�1ðt1; t2Þ, is
more complicated especially for large values of i.
4. Applications

In this section, applying Theorem 1, we give the final expression for the ð2;n� 2Þ system reliability in the case of n ¼ 3 and n ¼ 4, i.e.
with one and two warm standbys respectively and with particular lifetime distributions.
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4.1. (2,1)-System with exponential lifetimes

We first study the case of n ¼ 3 units with lifetimes exponentially distributed with parameter bf , when fully energized, and bp, when
partially energized. In this case the joint cdf K2ðs3;m3Þ, of the random quantities S3 ¼minfT1; T2g and M3 ¼maxfT1; T2g, is given by:
K2ðs3;m3Þ ¼ 1� 2e�bf m3 � e�2bf s3 þ 2e�bf ðm3þs3Þ: ð10Þ
Applying (4), or (9) for i ¼ 3, the lifetime distribution F3ðtÞ of the considered system is as follows:
F3ðtÞ ¼ 1þ e�2bf t � 2e�bf t � 2bf e�2bf tðebf t � 1Þ
bp

þ
2b2

f e�tð2bfþbpÞðetðbfþbpÞ � 1Þ
bpðbf þ bpÞ

: ð11Þ
In Fig. 2 we present the system reliability F3ðtÞ for bf ¼ 1
10 and bp ¼ 1

30, i.e. for E½Ti� ¼ 10 ði ¼ 1;2;3Þ and E½T3p� ¼ 30.

4.2. (2,1)-System with exponential and Weibull lifetimes

In a (2,1)-system with standby unit-lifetime following a Weibull distribution with parameters b ¼ 2 and k ¼ 2, i.e. H3ðtÞ ¼ 1� e
�t2

4 and
E½T3p� ¼

ffiffiffiffi
p
p

, and with initial units U1 and U2 lifetimes exponentially distributed with parameter bf ¼ 2, when fully energized, i.e.
GiðtÞ ¼ 1� e�2t and E½Ti� ¼ 0:5 for i ¼ 1;2, we get from the Theorem 1:
F3ðtÞ ¼ e�4t e2t � 1Þ2 þ 4
ffiffiffiffi
p
p

e2tþ4ðErf ½2� � Erf 2þ t
2

� �� �
þ Erf

t
2

� �� �� �
;

where
Erf ½z� ¼ 2ffiffiffiffi
p
p

Z z

0
e�t2

dt:
4.3. (2,2)-System with exponential lifetimes

Now we study the case of n ¼ 4 units with lifetimes exponentially distributed with parameter bf , when fully energized, and bp, when
partially energized. We first evaluate the joint cdf of the random variables M3 and V3; namely L2 by applying (6) and (7). Then we evaluate
the joint cdf K3 of the random variables S4 and M4 from (8) for i ¼ 4 and we introduce it into (5), or (9) for i ¼ 4, and we get the lifetime
distribution F4 of the considered system. Specifically we have:

For i ¼ 3; we have from (6)
L2ðm3;v3Þ ¼ 1� 2e�bf m3 þ e�2bf m3 � 2bf

bf þ bp
e�bf v3 þ 2bf

bp
e�bf ðm3þv3Þ �

2b2
f

bpðbf þ bpÞ
e�ðbfþbpÞm3�bf v3 ; m3 6 v3;
and
L2ðm3;v3Þ ¼ 1� 2e�bf m3 � e�2bf v3 þ 2ðbf þ bpÞ
bp

e�bf ðm3þv3Þ � 2bf

bf þ bp
e�bf v3 þ 2bf

ðbf þ bpÞ
e�ð2bfþbpÞv3 � 2bf

bp
e�bf m3�ðbfþbpÞv3 ; m3 > v3: ð12Þ
Introducing (11) and (12) into (8) for i ¼ 4 we get
K3ðs4;m4Þ ¼ 1þ 2þ 4bf

bp

� �
e�bf ðm4þs4Þ þ 2bf

bp
e�s4ð2bfþbpÞ � 2bf þ bp

bp
e�2bf s4 � 2ð2bf þ bpÞ

bp þ bf
e�bf m4 � 2bf ð2bf þ bpÞ

bpðbf þ bpÞ
e�bf ðm4þs4Þ�bps4 : ð13Þ
Finally, applying (5), or (9) for i ¼ 4, the lifetime distribution F4ðtÞ of the considered system is as follows:
F4ðtÞ ¼
1

b2
pðbf þ 2bpÞ

½e�2tðbfþbpÞ � ð2ð�1þ etbp Þ2b3
f þ ð1� 8etbp þ 7e2tbp Þb2

f bp þ e2tbp ð7� 8etbf þ e2tbf Þbf b
2
p þ 2e2tbp ð�1þ etbf Þ2b3

pÞ�;
or after a rearrangement of the terms we get:
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Fig. 3. System reliability F4ðtÞ for bf ¼ 1
10 and bp ¼ 1

30.
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F4ðtÞ ¼ 1� 4ð2bf þ bpÞ
bf þ 2bp

e�tbf þ ð2bf þ bpÞðbf þ bpÞ
b2

p

e�2tbf �
4b2

f

b2
p

e�ð2bfþbpÞt þ
b2

f ð2bf þ bpÞ
b2

pðbf þ 2bpÞ
e�ð2bfþ2bpÞt : ð14Þ
In Fig. 3 we present the system reliability F4ðtÞ for bf ¼ 1
10 and bp ¼ 1

30, i.e. for E½Ti� ¼ 10 ði ¼ 1; . . . ;4Þ and E½Tip� ¼ 30 ði ¼ 1;2Þ.

Remark 2. In the above three cases the application of Theorem 1 was rather straightforward. In systems with a rather large number of
warm standby units and/or less tractable lifetime distributions, the implementation of Theorem 1 would require the application of
computationally intensive methods such as modern MCMC algorithms. This will be the subject of a future work.
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