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Abstract

A parallel (2, n � 2)-system is investigated here where two units start their operation simultaneously and any one of
them is replaced instantaneously upon its failure by one of the (n � 2) cold standbys. We assume availability of n non-
identical, non-repairable units for replacement or support. The system reliability is evaluated by recursive relations with
unit-lifetimes Ti (i = 1, . . . , n) that have a general joint distribution function F(t). On the basis of the derived expression,
simulation techniques have been developed for the evaluation of the system reliability and the mean time to failure,
useful when dealing with large systems or correlated unit-lifetimes and less mathematically manageable distributions.
Simulation results are presented for various lifetime distributions and comparisons are made with derived analytic
results for some special distributions and moderate values of n.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Repairable two-unit redundant systems have attracted the attention of several researchers working in the
field of reliability theory. Many workers, including Murari and Goel [10], Gupta and Goel [3], Goel et al. [1]
and Gupta and Chaudhary [5], have investigated the two-unit standby system models assuming that, on the
failure of one unit, it is replaced by the standby unit instantaneously. Gupta and Kishan [6] consider situ-
ations of a two-unit system where the standby unit does not operate instantaneously but a fixed preparation
time is required to put standby and repaired units into operation. Several workers including Gopalan et al.
[2], Gupta and Goel [4], Murari and Maruthachalam [9], have analysed two-unit system models under a
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Nomenclature

Ui the ith unit introduced into the system
Ti lifetime of ith unit
fi(Æ), Fi(Æ) PDF and CDF of the ith unit-lifetime
f(t), F(t) joint PDF and CDF of unit-lifetimes
R(Æ) reliability function
Si starting time of operation of the ith unit
n number of available and non-repairable units
T system lifetime
MTSF mean time to system failure
c fixed required period of system operation
S the event {T P c}
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variety of assumptions using the regenerative point technique. In all these system models it is assumed that
the lifetimes are uncorrelated random variables. Gupta et al. [7] have investigated a two non-identical par-
allel system with correlated lifetimes and independently distributed repair times. In these models the repair
time may be fixed or random and with or without administrative delay. In all these parallel system models it
is assumed that the system failure occurs only when both units stop functioning but it is not necessary that
both units have to work simultaneously. The structure of these system models allows the operation of only
one unit during the repair time of the other.

In Kokolakis et al. [8], a multi-unit non-repairable redundant parallel system is considered. The units
start at prescheduled times and up to n units may be working simultaneously. The system reliability is
derived for independent lifetimes with general distributions and its optimization with respect to the units�
prescheduled starting times is investigated. Utkin [13] studied the reliability of parallel systems and pro-
vided bounds for the reliability under partial information about lifetime distributions and independence.

Papageorgiou and Kokolakis [11], have investigated a two-unit parallel system supported by standbys.
In that system, there is available a fixed number of n, non-repairable and non-identical units. Two units
operate simultaneously until, at least, the entrance of the last standby unit. The two-unit parallel system
is up, as long as there is at least one working unit. The unit lifetimes are considered random, not necessarily
independently distributed, with a general joint distribution F. The main result there is the analytic evalua-
tion of the system reliability, unlike most earlier results which provide bounds under partial information
about the joint pdf, or refer to specific independent unit lifetime distributions. The system reliability is pro-
vided in an exact closed form in cases of some special lifetimes distributions and moderate values of n.
Using an analogous probabilistic analysis in this paper, we extend the above main result by deriving a reli-
ability formula which is efficient and easy to use for simulation techniques. These techniques are necessary
for large systems, or for correlated unit-lifetimes, or for mathematically intractable distributions, cases
where the result in [11], does not provide a closed form for the system reliability. On the basis of our main
result an algorithm is developed for the evaluation of the system reliability and the mean time to system
failure (MTSF) and simulated results are presented. A comparison between the derived analytic and sim-
ulated results for the system reliability and MTSF underlines the usefulness of this investigation.
2. System description

The problem of the successful control of a process by a two-unit parallel system supported by cold stand-
bys is considered in this paper.
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Fig. 1. Units U3 and U4 starting operation upon the failure time of the (a) U1 and U2, (b) U2 and U1, (c) U1 and U3, and (d) U2 and U3,
respectively. The process is not successfully controlled for the required time t = c.
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Here, we suppose that there is available a fixed number of n non-repairable and non-identical units. The
unit-lifetimes Ti (i = 1, . . . , n) are random, not necessarily independently distributed, with a general joint
distribution F. The process has a fixed duration c. Thus, the control of the process is considered successful
when the system is up, i.e. at least one of its two units is in operation state, during the required time interval
c. The process is initially controlled by two units and the remaining (n � 2) units are cold standbys. The two
initial units start their operation simultaneously, i.e. at times S1 = S2 = 0. The first failed unit is replaced
upon its failure instantaneously by a new one, i.e. the third unit starts its operation at time
S3 = min{T1, T2}. Similarly the forth unit starts its operation upon the failure time of the first failed unit
among the two working ones, i.e. at time S4 = min{max{T1, T2}, S3 + T3} (Fig. 1).

In general, the ith unit starts its operation at time Si = min{max{T1, T2, S3 + T3, . . . , Si�2 + Ti�2},
Si�1 + Ti�1}, and it works in parallel with that already introduced and not failed before Si. Thus, the times
Si (i = 3, 4, . . . , n) are random, and the process is simultaneously controlled by two working units until, at
least, the entrance of the last available unit. The system fails when all units fail and the system reliability
depends entirely on the joint distribution of unit-lifetimes.

There are many realistic situations where the above policy describes the control of a process by a parallel
system. For example, a satellite communication system with two satellites in orbit and (n � 2) standbys. If
at least one of two satellites is functioning in orbit then the system is considered a success, while if no-one
satellite functions in orbit, the system is considered a failure. It is assumed that the time required to place a
satellite in orbit after launch is negligible. Another example, is a power station which supports a small
region or an island. The power station is always functioning with two generators till the stock�s spending.
3. Model analysis

Let T, be the system lifetime and Ti (i = 1, . . . , n), be the lifetimes of the units Ui, with joint distribution,
F. Let also S, be the event of the successful control of the process during the required period of time c, i.e.
S ¼ fT P cg.
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From the description of the policy above, it follows that the system is non-stop functioning with two
units until, at least, the entrance of the unit Un at time Sn < c. We are interested in evaluating the system
reliability P ½S� ¼ P ½T P c� and the mean time to system failure (MTSF).

3.1. General case

We will derive a recursive relation to evaluate P ½S� for any number, n, of non-independent and non-
identically distributed lifetimes.

Here, we have:
S1 ¼ S2 ¼ 0;

S3 ¼ minfT 1; T 2g;
and in general for i P 4,
Si ¼ minfmaxfT 1; T 2; T 3 þ S3; . . . ; T i�2 þ Si�2g; T i�1 þ Si�1g ði ¼ 4; . . . ; nÞ. ð1Þ

Let us define now the following random variables:
Mi ¼ maxfT 1; T 2; T 3 þ S3; . . . ; T i�1 þ Si�1g ði ¼ 2; . . . ; nÞ ð2Þ

with
M2 ¼ T 1 and M3 ¼ maxfT 1; T 2g.

In order to develop recursive relations, we write (2) in the following form:
Mi ¼ maxfmaxfT 1; T 2; T 3 þ S3; . . . ; T i�2 þ Si�2g; T i�1 þ Si�1g ði ¼ 4; . . . ; nÞ.

Then, for the system lifetime, we have:
T ¼ maxfT 1; T 2; T 3 þ S3; . . . ; T n þ Sng.

With
V i ¼ T i þ Si ði ¼ 2; . . . ; nÞ; ð3Þ

we have
Si ¼ minfMi�1; V i�1g ði ¼ 3; . . . ; nÞ;

and
Mi ¼ maxfMi�1; V i�1g ði ¼ 3; . . . ; nÞ.

Consider now the following events:
ðiÞ Ai ¼ fMi 6 V ig ði ¼ 2; . . . ; n� 1Þ;
ðiiÞ Bi ¼ fMi < cg ði ¼ 2; . . . ; nÞ;
ðiiiÞ Ci ¼ fV i < cg ði ¼ 2; . . . ; nÞ;
ðivÞ Di ¼ Bi \ Ci ði ¼ 2; . . . ; nÞ;
ðvÞ Fi ¼ fT iþ1 þ V i < cg ði ¼ 2; . . . ; n� 1Þ;
ðviÞ Gi ¼ fT iþ1 þMi < cg ði ¼ 2; . . . ; n� 1Þ;
ðviiÞ Qi ¼Fi \A0

i ði ¼ 2; . . . ; n� 1Þ;
ðviiiÞ Wi ¼ Gi \Ai ði ¼ 2; . . . ; n� 1Þ.

ð4Þ
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The interpretation of the events in (i)–(vi) is obvious. We only interpret the events Qi in (vii) and Wi in (viii).
Both events Qi and Wi, refer to the case where the system does not fail before the starting time of the
(i + 1)-unit. This starting time is either the failure time of the latest introduced unit, i.e. that of the i-unit,
and thus this unit has to be replaced, event Qi, or it is the failure time of another one among the (i � 1)
previously introduced units, and thus that unit has to be replaced, event Wi.

We may notice now the following:
Dn ¼ Bn \ Cn ¼ fMn < cg � fV n < cg ¼ fmaxfMn; V ng < cg.

Introducing (2) and (3), for i = n, we get:
Dn ¼ fmaxfT 1; T 2; T 3 þ S3; T 4 þ S4; . . . ; T n þ Sng < cg ¼ fT < cg ¼ S0;
that is Dn, is the complement of the event S and therefore,
P ½S� ¼ 1� P ½Dn�. ð5Þ
The (n, n � 2)-system reliability is given by the following:

Theorem 1. The system reliability is
P ½S� ¼ 1�
X2n�2

j¼1

Z
K1j

. . .

Z
Knj

f ðtÞdtn . . . dt1
with Kij ði ¼ 1; . . . ; n; j ¼ 1; . . . ; 2n�2Þ given by:
ðiÞ K1j ¼ ft1 < cg;
ðiiÞ Kij ¼ ½fMi � Si 6 ti < c� Sig � IðYðjÞi ;WiÞ� [ ½f0 6 ti < Mi � Sig � IðYðjÞi ;QiÞ� ði ¼ 2; . . . ; n� 1Þ;
ðiiiÞ Knj ¼ ½f0 6 tn < c�Mn�1g � IðYðjÞn�1;Wn�1Þ� [ ½f0 6 tn < c� V n�1g � IðYðjÞn�1;Qn�1Þ�;
where I stands for the indicator function for sets, i.e. IðY;QÞ ¼ X when Y ¼ Q and IðY;QÞ ¼ Ø when Y 6¼ Q.

The proof is presented in [11] and thus omitted here.
From Theorem 1, we get an exact closed form for the system reliability in cases of iid unit-lifetimes, mod-

erate values of n and mathematically tractable distributions. Theorem 2, gives another formula efficient and
easy for simulated evaluation of the system reliability and the MTSF, most useful when dealing with large
systems, correlated unit-lifetimes or distributions that do not lead to explicit analytic results. This can also
be used as an alternative to Theorem 1 for analytic evaluation of the system reliability. We have to mention
here, that the specification of the correlation structure in the joint pdf f(t), is directly related to the system�s
structure.

Theorem 2. The system reliability P ½S� is given by
P ½S� ¼ 1�
X2n�2

j¼1

P
\n�1

i¼1

Y
ðjÞ
i

" #
;

where Y
ðjÞ
1 ¼ D2, and for i = 2, . . . , n � 1, Y

ðjÞ
i is either Wi ¼ Gi �Ai or Qi ¼Fi �A0

i as j runs from 1 to 2n�2

covering all possible choices.

Proof. For i P 3, the events Bi can be written:
Bi ¼ fMi < cg ¼ fmaxfMi�1; V i�1g < cg ¼ fMi�1 < cg � fV i�1 < cg ¼ Bi�1 � Ci�1 ¼ Di�1;



E. Papageorgiou, G. Kokolakis / European Journal of Operational Research 176 (2007) 1016–1032 1021
and since by definition Di ¼ Bi � Ci (i = 2, . . . , n), we have:
Di ¼ Bi � Ci ¼ Di�1 � Ci ði ¼ 3; . . . ; nÞ ð6Þ
with
D2 ¼ B2 � C2 ¼ fT 1 < cg � fT 2 < cg. ð7Þ
We may analyse now the event Ci (i = 3, . . . , n), as a union of two incompatible events. Specifically
Ci ¼ Ci �Ai�1 [ Ci �A0
i�1 ði ¼ 3; . . . ; nÞ; ð8Þ
and since S2 = 0, we have also
C2 ¼ fT 2 þ S2 < cg ¼ fT 2 < cg.

Since,
Ci �Ai�1 ¼ fT i þminfMi�1; V i�1g < cg � fMi�1 6 V i�1g ¼ fT i þMi�1 < cg � fMi�1 6 V i�1g
¼ Gi�1 �Ai�1 ði ¼ 3; . . . ; nÞ;
and
Ci �A0
i�1 ¼ fT i þminfMi�1; V i�1g < cg � fMi�1 > V i�1g ¼ fT i þ V i�1 < cg � fMi�1 > V i�1g
¼Fi�1 �A0

i�1 ði ¼ 3; . . . ; nÞ;
the relation (8), can be written:
Ci ¼ Gi�1 �Ai�1 [Fi�1 �A0
i�1 ði ¼ 3; . . . ; nÞ;
and the result (6), takes the following recursive form:
Di ¼ ðGi�1 �Ai�1 [Fi�1 �A0
i�1Þ �Di�1 ði ¼ 3; . . . ; nÞ ð9Þ
with Gi, Fi, and Ai given by (4). Thus, for i = n, the above recursive relation gives:
Dn ¼
\n
i¼3

ðGi�1 �Ai�1 [Fi�1 �A0
i�1Þ

( )
\D2. ð10Þ
Let now Wi ¼ Gi �Ai and Qi ¼Fi �A0
i (i = 2, . . . , n � 1). Since the events Wi and Qi are incompatible, the

probability of the event Dn can be written:
P ½Dn� ¼ P
\n�1

i¼2

ðGi �Ai [Fi �A0
iÞ

( )
�D2

" #
¼ P

\n�1

i¼2

ðWi [ QiÞ
( )

�D2

" #
¼ P

[2n�2

j¼1

\n�1

i¼1

Y
ðjÞ
i

" #
or
P ½Dn� ¼
X2n�2

j¼1

P
\n�1

i¼1

Y
ðjÞ
i

" #
; ð11Þ
where Y
ðjÞ
1 ¼ D2, and for i = 2, . . . , n � 1, Y

ðjÞ
i is either Wi ¼ Gi �Ai or Qi ¼Fi �A0

i, as j runs from 1 to
2n�2 covering all possible choices. h
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4. Applications

In this section, we give the final expressions for the system reliability, applying Theorem 2 for n = 3, 4
and 5. These expressions are used in Sections 5 and 6 for simulation purposes. They can also be used for
exact analytic evaluations and comparisons.

4.1. (2, 1)-system (n = 3)

For n = 3, we have from (5)
P ½S� ¼ P ½T P c� ¼ 1� P ½D3�

with P ½D3� given by (11), namely
P ½D3� ¼
X2

j¼1

P
\2
i¼1

Y
ðjÞ
i

" #
;

where Y
ðjÞ
1 ¼ D2 and Y

ðjÞ
2 is W2 ¼ G2 �A2, for j = 1, and Q2 ¼F2 �A0

2, for j = 2.

Thus,
P ½D3� ¼ P ½D2W2� þ P ½D2Q2�.

From the relations in (4), we get
A2 ¼ fT 1 6 T 2g; G2 ¼ fT 3 þ T 1 < cg; and F2 ¼ fT 3 þ T 2 < cg.

Then we have:
W2 ¼ G2 �A2 ¼ fT 3 þ T 1 < cg � fT 1 6 T 2g; ð12Þ

and
Q2 ¼F2 �A0
2 ¼ fT 3 þ T 2 < cg � fT 1 > T 2g. ð13Þ
Using the above two relations and (7), the probability of the event D3 is:
P ½D3� ¼ P ½fT 2 < cg � fT 3 þ T 1 < cg � fT 1 6 T 2g� þ P ½fT 1 < cg � fT 3 þ T 2 < cg � fT 1 > T 2g�;

and therefore, we have:
P ½S� ¼ 1� P ½fT 2 < cg � fT 3 þ T 1 < cg � fT 1 6 T 2g� � P ½fT 1 < cg � fT 3 þ T 2 < cg � fT 1 > T 2g�. ð14Þ
4.2. (2, 2)-system (n = 4)

For n = 4, we have
P ½S� ¼ P ½T P c� ¼ 1� P ½D4�

with P ½D4� given by (11), namely
P ½D4� ¼
X4

j¼1

P
\3
i¼1

Y
ðjÞ
i

" #
;

where Y
ðjÞ
1 ¼ D2 and for i ¼ 2; 3; YðjÞi is either Wi or Qi, as j runs from 1 to 4.

Thus,
P ½D4� ¼ P ½D2W2W3� þ P ½D2Q2W3� þ P ½D2W2Q3� þ P ½D2Q2Q3�.
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Since
M3 ¼ maxfT 1; T 2g; S3 ¼ minfT 1; T 2g;

the relations (4i), (4vi), (4v) for i = 3, can be written respectively:
A3 ¼ fmaxfT 1; T 2g 6 T 3 þminfT 1; T 2gg; G3 ¼ fT 4 þmaxfT 1; T 2g < cg;

and
F3 ¼ fT 4 þ T 3 þminfT 1; T 2g < cg.

Then, we have
W3 ¼ G3 �A3 ¼ fT 4 þmaxfT 1; T 2g < cg � fmaxfT 1; T 2g 6 T 3 þminfT 1; T 2gg; ð15Þ

and
Q3 ¼F3 �A0
3 ¼ fT 4 þ T 3 þminfT 1; T 2g < cg � fmaxfT 1; T 2g > T 3 þminfT 1; T 2gg. ð16Þ
Using the relations (7), (12) and (13) together with the above two relations, the probability of the event S,
is given by:
P ½S� ¼ 1� P ½fT 3 þ T 1 < cg � fT 4 þ T 2 < cg � fT 2 6 T 3 þ T 1g � fT 1 6 T 2g� � P ½fT 3 þ T 2 < cg

� fT 4 þ T 1 < cg � fT 1 6 T 3 þ T2g � fT 1 > T 2g� � P ½fT 2 < cg � fT 4 þ T 3 þ T 1 < cg

� fT 2 > T 3 þ T 1g � fT 1 6 T 2g� � P ½fT 1 < cg � fT 4 þ T 3 þ T 2 < cg � fT 1 > T 3 þ T 2g � fT 1 > T 2g�.

ð17Þ

4.3. (2, 3)-system (n = 5)

For n = 5, we have
P ½S� ¼ P ½T P c� ¼ 1� P ½D5�.

Similarly, the probability of the event S, is given by:
P ½S� ¼ 1� P ½T 2 < c; T 1 6 T 2; T 3 þ T 1 < c; T 2 6 T 3 þ T 1; T 4 þ T 2 < c;

T 3 þ T 1 < T 4 þ T 2; T 5 þ T 3 þ T 1 < c�

� P ½T 1 < c; T 1 > T 2; T 3 þ T2 < c; T 1 6 T 3 þ T 2; T 4 þ T 1 < c; T 3 þ T 2 < T 4 þ T 1;

T 5 þ T 3 þ T 2 < c� � P ½T 2 < c; T 1 6 T 2; T 3 þ T 1 < c; T 2 > T 3 þ T 1;

T 4 þ T 3 þ T 1 < c; T 2 < T 4 þ T 3 þ T 1; T 5 þ T 2 < c� � P ½T 1 < c; T 1 > T 2;

T 3 þ T 2 < c; T 1 > T 3 þ T 2; T 4 þ T 3 þ T 2 < c; T 1 < T 4 þ T 3 þ T 2; T 5 þ T 1 < c�

� P ½T 2 < c; T 1 6 T 2; T 3 þ T 1 < c; T 2 6 T 3 þ T 1; T 4 þ T 2 < c; T 3 þ T 1 > T 4 þ T 2;

T 5 þ T 4 þ T 2 < c� � P ½T 1 < c; T 1 > T 2; T 3 þ T 2 < c; T 1 6 T 3 þ T 2; T 4 þ T 1 < c;

T 3 þ T 2 > T 4 þ T 1; T 5 þ T 4 þ T 1 < c� � P ½T 2 < c; T 1 6 T 2; T 3 þ T 1 < c;

T 2 > T 3 þ T 1; T 4 þ T 3 þ T 1 < c; T 2 > T 4 þ T 3 þ T 1; T 5 þ T 4 þ T 3 þ T 1 < c�

� P ½T 1 < c; T 1 > T 2; T 3 þ T 2 < c; T 1 > T 3 þ T 2; T 4 þ T 3 þ T 2 < c;

T 1 > T 4 þ T 3 þ T 2; T 5 þ T 4 þ T 3 þ T 2 < c�. ð18Þ
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5. Analytic and simulated results with independent unit-lifetimes and special distributions

Based on Theorem 2, we developed simulation programs which compute the system reliability and the
MTSF, for either independent or correlated unit-lifetimes. In this section, we consider the case of an iden-
tical (2, n � 2)-system with independent unit-lifetimes exponentially distributed for n = 3, 4 and 5, and the
case of a non-identical three-unit system with independent unit-lifetimes exponentially distributed. We also
consider an identical three-unit system with independent unit-lifetimes following a special Weibull distribu-
tion. The reliability for all the above systems has been provided in exact closed form presented in [11]. Ana-
lytic results for the system reliability and MTSF, have been derived and comparison with the simulated
ones are provided.

All simulations programs have developed in the Mathematica environment and the simulated values
have resulted after 50,000 iterations. The algorithm of the simulation programs is presented in pseudo-code
in Appendix I.

5.1. (2, n � 2)-identical system with exponential lifetimes (n = 3, 4, 5)

In [11], the reliability P ½S�, is derived from Theorem 1, for a n-identical unit system (n = 3, 4, 5), with
unit-lifetimes independent and exponentially distributed with parameter b. Specifically, we have:
Table
Expon

c

10
20
30
40
50
60
P ½S� ¼ P ½T P c� ¼ �3e�2bc � 2bce�2bc þ 4e�bc ðn ¼ 3Þ; ð19Þ
P ½S� ¼ P ½T P c� ¼ �7e�2bc � 6bce�2bc � 2b2c2e�2bc þ 8e�bc ðn ¼ 4Þ; ð20Þ

P ½S� ¼ P ½T P c� ¼ �15e�2bc � 14bce�2bc � 6b2c2e�2bc � 4

3
b3c3e�2bc þ 16e�bcðn ¼ 5Þ. ð21Þ
Applying the above results for b = 0.04, i.e. with E[Ti] = 25 (i = 1, . . . , n), and c = 10, 20, . . . , 60, we get the
exact values for P ½S�. These are presented in the second column of Tables 1–3. Using the results (14), (17)
and (18) for n = 3, 4 and 5 respectively, and running the corresponding simulation programs for the same
values of b and c, we get the numerical estimates of the reliability P ½S� and the MTSFs presented in the
third and fifth column of Tables 1–3 respectively. In these tables, it is also presented the exact MTSFs,
as they can be derived from (19)–(21), using the relation MTSF ¼

R1
0

RðtÞdt.

Remark 1. We have investigated the problem of approximating the pdf of the above (2, n � 2)-system
lifetime by an appropriately chosen Weibull pdf. There are several ways to choose an approximating
Weibull. We have investigated the following approximations: (i) by equating modes and curvature at
modes, (ii) by equating means and variances and (iii) by equating modes and variances. We have found out
that the best approximation was that provided by (iii). As an example, we present the approximation of the
reliability function (19), when b = 0.04. The values of the Weibull parameters (a,b) are respectively: (i)
1
entially iid (n = 3)

P ½S� MTSF

Exact Estimated Exact Estimated

0.9738 0.9736
0.8686 0.8691
0.7149 0.7142 50.00 49.95
0.5549 0.5542
0.4131 0.4159
0.2987 0.2985



Table 2
Exponentially iid (n = 4)

c P ½S� MTSF

Exact Estimated Exact Estimated

10 0.9951 0.9950
20 0.9538 0.9542
30 0.8601 0.8609 62.50 62.45
40 0.7298 0.7297
50 0.5882 0.5883
60 0.4548 0.4530

Table 3
Exponentially iid (n = 5)

c P ½S� MTSF

Exact Estimated Exact Estimated

10 0.9992 0.9991
20 0.9865 0.9877
30 0.9415 0.9418 75.00 74.99
40 0.8571 0.8496
50 0.7429 0.7447
60 0.6154 0.6110
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(1.9669, 45.0694), (ii) (1.6790, 55.9893) and (iii) (1.6525, 55.1175). Figs. 2a–c present the corresponding
approximations of the reliability function (19), for the above three cases. It seems that the Weibull
approximation would be better for large systems, but this needs a more thorough investigation. The study
of the asymptotic behavior of the magnitude of error would be also of interest.
5.2. (2, 1)-non-identical system with exponential lifetimes (n = 3)

In the case of a three-unit system with unit-lifetimes independent and exponentially distributed with dif-
ferent parameters bi (i = 1, 2, 3), the exact expression of the system reliability P ½S�, according to [11], is
quite large and thus is presented in Appendix II.

Applying the result in Appendix II, for b1 = 0.05, b2 = 0.04, and b3 = 0.025, i.e. with E[T1] = 20,
E[T2] = 25 and E[T3] = 12.5 and c = 10, 20, . . ., 60, and running the simulation program that makes use
of the result (14) for the same values of b�s and c, we get numerical results for the reliability P ½S� and
MTSF, presented in Table 4.

Remark 2. It is interesting to notice that reliability function in Appendix II is symmetrical with respect to
b1 and b2. This is also true with any lifetime distributions since the first two units start simultaneously. With
different lifetime distributions, it might be of interest to optimize the system with respect to the order that
the units are introduced. In the case of three non-identical units with exponential lifetimes, it can be simply
proved, from the reliability function in Appendix II, that the probability of successful control is maximized
when the best unit, i.e. the one with the largest mean lifetime, is kept as standby. For example, with c = 10
and (b1, b2, b3), the permutations of the numbers 0.05, 0.04, and 0.025, we obtain as the first row of the
Tables 4 and 5 shows, P ½S� ¼ 0:9793 when b3 = 0.025, and P ½S� ¼ 0:9790 when b3 = 0.05, while the
interchange of b1 with b2 does not matter. Comparing the corresponding MTSFs, the effect of the ordering
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Fig. 2. Reliability function for required period c of a three identical unit system with independent unit-lifetimes exponentially
distributed (b = 0.04). The dotted line corresponds to the Weibull approximation.

Table 4
Optimal ordering of units (n = 3)

c P ½S� MTSF

Exact Estimated Exact Estimated

10 0.9793 0.9791
20 0.8942 0.8945
30 0.7661 0.7660 59.38 59.40
40 0.6276 0.6267
50 0.4992 0.5003
60 0.3897 0.3870
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is much more apparent. Analytic results in the case of a non-identical four-unit system with exponential
lifetimes have been also derived. Numerical examples show again that the better unit has to be used later.



Table 5
Random ordering of units (n = 3)

c P ½S� MTSF

Exact Estimated Exact Estimated

10 0.9790 0.9788
20 0.8917 0.8923
30 0.7591 0.7607 57.14 57.15
40 0.6152 0.6168
50 0.4821 0.4843
60 0.3694 0.3686

Table 6
Weibull iid (n = 3)

c P ½S� MTSF

Exact Estimated Exact Estimated

0.3 0.9998 0.9998
0.5 0.9967 0.9967
0.7 0.9802 0.9800 1.61 1.61
0.9 0.9330 0.9331
1.1 0.8418 0.8410
1.3 0.7093 0.7089
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5.3. (2, 1)-identical system with Weibull lifetimes (n = 3)

In the case of a three-unit system with independent unit-lifetimes following a special Weibull distribution
with parameters b = 2 and k = 1, i.e. when fi(t) = 2te�t2

, E[Ti] =
p

p/2 (i = 1, 2, 3), then according to [11],
the reliability of the system P ½S�, is given by:
P ½S� ¼ P ½T P c�

¼ � 5

3
e�2c2 þ 8

3
e�c2 � ce�

3
2c2 ffiffiffiffiffiffi

2p
p

Erf
cffiffiffi
2
p
� �

þ 2

3
ce�

2
3c2

ffiffiffi
p
3

r
Erf

cffiffiffi
3
p
� �

þ 2

3
ce�

2
3c2

ffiffiffi
p
3

r
Erf

2cffiffiffi
3
p
� �

; ð22Þ
where
Erf ½z� ¼ 2ffiffiffi
p
p

Z z

0

e�t2

dt.
Applying the result (22) and running the simulation program we get numerical results for the reliability
P ½S� and the MTSF, which are presented in Table 6.
6. Simulated results with special distributions

From the comparisons made in the previous section, we have realized that in all cases the simulated
results come very close to the exact values of the system reliability and the MTSF. Thus, the simulation
method applied is quite good for most realistic situations. For large systems or for less mathematically
tractable distributions, even in the case of independent unit-lifetimes, the simulation approach is appropri-
ate. In the following subsections we present simulated values for identical (2, n � 2)-system (n = 4, 5) with
independent unit-lifetimes following a certain Weibull distribution. We present also a non-identical
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(2, n � 2)-system (n = 3, 4) with independent unit-lifetimes following Weibull distributions. Finally, for the
case of correlated lifetimes we present a two-unit system where the joint distribution of the lifetimes of both
units is taken to be the bivariate exponential. The same procedure can be used for larger number of units
provided that the correlation structure of the units is specified.

6.1. (2, n � 2)-identical system with Weibull lifetimes (n = 4, 5)

In a (2, n � 2)-system with independent unit-lifetimes following a special Weibull distribution with
parameters b = 2 and k = 1, i.e. when fi(t) = 2te�t2

(i = 1, . . . , n; n = 4, 5), the simulated results for the
probability P ½S� and the MTSF, are presented respectively in Tables 7 and 8.

6.2. (2, n � 2)-non-identical system with Weibull lifetimes (n = 3, 4)

As another example, we present in Table 9, the simulated values for P ½S� and MTSF, of a three-unit
system with independent unit-lifetimes following Weibull distributions with different parameters. Taking
b1 = 2, b2 = 3, b3 = 4 and k = 1 we obtain:
Table 9
Non-identical units with Weibull lifetimes (n = 3)

c Estimated P ½S� Estimated MTSF

0.5 0.9998
0.8 0.9915
1.1 0.9208 1.61
1.4 0.6998
1.7 0.3938
2.0 0.1534

Table 8
Weibull iid (n = 5)

c Estimated P ½S� Estimated MTSF

0.8 0.9998
1.1 0.9962
1.4 0.9775 2.52
1.7 0.9158
2.0 0.7838
2.3 0.6000

Table 7
Weibull iid (n = 4)

c Estimated P ½S� Estimated MTSF

0.8 0.9962
1.1 0.9710
1.4 0.8873 2.05
1.7 0.7215
2.0 0.5135
2.3 0.3154
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We consider also a four-unit system with independent unit-lifetimes following Weibull distributions with
different parameters bi (i = 1, . . . , 4) and k = 1. Then the simulated values for P ½S� and MTSF, when
b1 = 2, b2 = 3, b3 = 4 and b4 = 5, are presented in Table 10.

6.3. Two-unit (2, 0)-system with correlated unit-lifetimes following a bivariate exponential distribution

The lifetimes T1 and T2, are assumed here to have the bivariate exponential distribution. Specifically, the
joint pdf is:
Table
Correl

c

2
4
6

Table
Non-id

c

0.8
1.1
1.4
1.7
2.0
2.3
f ðt1; t2Þ ¼ klð1� rÞe�ðkt1þlt2ÞI0ð2ðklrt1t2Þ1=2Þ; k; l; t1; t2 > 0; jrj < 1; ð23Þ

where, cf. Gupta et al. [7],
I0ðzÞ ¼
X1
k¼0

ðz=2Þ2k
=ðk!Þ2;
the Bessel function of type I and order zero,
I0ð2ðklrt1t2Þ1=2Þ ¼
X1
k¼0

ðklrt1t2Þk

ðk!Þ2
.

Thus, the marginal probability distribution function of T1, equals:
f ðt1Þ ¼ kð1� rÞe�kð1�rÞt1 ; k > 0; t1 > 0; jrj < 1; ð24Þ

and the conditional probability distribution function of T2jT1 = t1, equals:
f ðt2jT 1 ¼ t1Þ ¼ le�ðkrt1þlt2ÞI0ð2ðklrt1t2Þ1=2Þ; t2 > 0; k; l; t1 > 0; jrj < 1. ð25Þ

The simulation results when k = 0.5, l = 0.3 and r = 0.4 are presented in Table 11.

Remark 3. In order to use the Theorem 2, we generate correlated random pairs (T1, T2) that have the joint
pdf (23), as follows. T1, is generated according to (24), and T2, according to (25), using the rejection
11
ated unit-lifetimes (n = 2)

Estimated P ½S� Estimated MTSF

0.817
0.596 6.39
0.409

10
entical units with Weibull lifetimes (n = 4)

Estimated P ½S� Estimated MTSF

0.9999
0.9979
0.9650 2.03
0.8139
0.5158
0.2253



1030 E. Papageorgiou, G. Kokolakis / European Journal of Operational Research 176 (2007) 1016–1032
method. The same procedure can be used for larger values of units provided that we specify the joint pdf of
the non-failed unit and the new entering unit. The applied rejection method has worked quite well at a
reasonable length of time. Alternative rejection methods together with an extensive presentation of
sampling algorithms can be found in Ripley [12].
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Appendix I

All simulation programs for the computations of the system reliability and the MTSF, have been devel-
oped in the Mathematica environment, and ran in a Pentium IV computer. The simulation values for inde-
pendent unit-lifetimes have been derived after 50,000 iterations. In the case of correlated unit-lifetimes the
rejection method has been applied and the simulation values have been derived after 1000 iterations. In the
independence case, the production of each one of Tables 1–10 required about 2 h running time, while in
case of correlated unit-lifetimes the production of Table 11 required about 7 h.

The algorithm of the simulation programs, presented in pseudo-code, is given below:

begin
read n; (*Number of units*)
read c1; (*Initial*)
read k; (*Step*)
read c2; (*Final*)
read r; (*Iterations*);
for c = c1 to c2 step k

i = 0;
j = 0;
array M[r];
l = 1;
for w = 1 to r
array K[n];
K[n] = call random numbers( ); (*In case of correlated lifetimes the rejection method is used*)
if relation 11 is true, then i = i + 1, else j = j + 1;
T = f(K[n]); (*Evaluate from the unit-lifetimes the system-lifetime T using relation 11*)
M[l] = T;
l = l + 1;

end for;
R ¼ j

r;
Print ‘‘When c=’’ c ‘‘the system reliability R=’’ R;

MTSF ¼
Pr

l¼1
M ½l�

r ;
Print ‘‘The mean time to system failure is’’ MTSF;

end for;
end
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Appendix II

Papageorgiou and Kokolakis [11], in the case of a three-unit system with independent lifetimes following
Exponential distributions with parameters bi (i = 1, 2, 3), obtain the following result for the system reliabil-
ity P ½S�:
P ½S� ¼ P ½T P c� ¼ 1� b3
1

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b3

2

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b2
1b2

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b2

2b1

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ 2b2
1b3

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ 2b2

2b3

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b1b2b3

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b1b2b3

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b1b2
3

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b2b2

3

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b2
2b1e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b2

1b2e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ 2b2
1b2e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ 2b1b2

2e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b3
1e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b3

2e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b2
2b3e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b2

1b3e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� 3b1b2b3e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� 3b1b2b3e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� 2b2
1b3e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� 2b2

2b3e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b2b2
3e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b1b2

3e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b1b2
3e�b2c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b2b2

3e�b1c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b2
2b3e�ðb1þb2Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b2

1b3e�ðb1þb2Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ 2b1b2b3e�ðb1þb2Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ 2b1b2b3e�ðb1þb2Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b2b2
3e�ðb1þb2Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b1b2

3e�ðb1þb2Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b3
1e�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b3

2e�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ
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þ b2
1b2e�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b1b2

2e�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b2
1b3e�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b2

2b3e�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b1b2b2e�b3c

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b1b2b2e�b3c

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b3
1e�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b3

2e�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� 2b2
1b2e�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� 2b1b2

2e�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

� b1b2
2e�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
� b2

1b2e�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b2
1b3e�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b2

2b3e�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ

þ b1b2b3e�ðb2þb3Þc

ðb1 þ b2Þðb1 � b3Þðb1 þ b2 � b3Þ
þ b1b2b3e�ðb2þb3Þc

ðb1 þ b2Þðb2 � b3Þðb1 þ b2 � b3Þ
.
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