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Abstract

Here we examine an active redundant system with scheduled starting times of the units. We assume availability of n

non-identical, non-repairable units for replacement or support. The original unit starts its operation at time s1 = 0 and
each one of the (n � 1) standbys starts its operation at scheduled time si (i = 2, . . .,n) and works in parallel with those
already introduced and not failed before si. The system is up at times si (i = 2, . . .,n), if and only if, there is at least one
unit in operation. Thus, the system has the possibility to work with up to n units, in parallel structure. Unit-lifetimes Ti

(i = 1, . . .,n) are independent with cdf Fi, respectively. The system has to operate without inspection for a fixed period
of time c and it stops functioning when all available units fail before c. The probability that the system is functioning
for the required period of time c depends on the distribution of the unit-lifetimes and on the scheduling of the starting
times si. The reliability of the system is evaluated via a recursive relation as a function of the starting times si

(i = 2, . . .,n). Maximizing with respect to the starting times we get the optimal ones. Analytical results are presented for
some special distributions and moderate values of n.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Repairable two-unit redundant systems have attracted the attention of several researchers in the field of
reliability theory. Many workers, including Murari and Goel [1], Gupta and Goel [2], Goel et al. [3] and Gupta
and Chaudhary [4], have investigated the two-unit standby system models assuming that, a unit is replaced
instantaneously at its failure by a standby one. Gupta and Kishan [5] consider situations of two-unit system
where the standby unit does not operate instantaneously but a fixed preparation time is required to put
standby and repaired units into operation. In all these system models it is assumed that the lifetimes are uncor-
related random variables. Papageorgiou and Kokolakis [6] have investigated a related problem where a
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Nomenclature

Ui the ith unit introduced into the system
Ti lifetime of ith unit
fi(Æ), Fi(Æ) PDF and CDF of the ith unit-lifetime
Ri(Æ) reliability function of ith unit
si starting time of the ith unit
n number of available non repairable units
T system lifetime
MTSF mean time to system failure
c fixed required period of system operation
S the event {T P c}
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two-unit general parallel system is supported by (n � 2) cold standby units. It is a case of a passive redundant
system where two units start their operation simultaneously at time s = 0 and one of these is replaced by a new
one upon its failure. Thus, the starting times si are random. The main result there, is the evaluation of the
system reliability by using recursive probabilistic analysis for non-independent unit lifetimes with general dis-
tributions, unlike most earlier results which refer to specific unit lifetime distributions.

The problem of where to allocate a redundant unit in a system in order to optimize the system-lifetime is an
important problem in reliability theory. Many workers including El-Neweihi and Sethuraman [7], El-Neweihi
et al. [8], Shaked and Shanthikumar [9], and Singh and Misra [10], considered the above problem. There are
two common forms of redundancy in reliability theory, namely active and standby redundancy, according to
whether a spare unit starts its operation simultaneously with an original unit or at its failure time. Boland et al.
[11], considered the problem of allocating a redundant spare in a k-out-of-n system, where the units are inde-
pendent and stochastically ordered and showed that for active redundancy it is stochastically optimal always
to allocate the redundant unit to the weakest component. In the case of standby redundancy, sufficient con-
ditions were also provided for series and parallel systems in order to stochastically optimize the lifetime of
such systems. Mi [12], considered a related problem where there are n + r (1 6 r 6 n) available components.
The problem of which r components have to be used for active redundancy, and where to allocate them in
order to maximize the lifetime of the resulting k-out-of-n system was studied.

Here, we examine a related problem. It refers to an n-active redundant system where the main difference
from the above is that it has to work without inspection. Thus, the starting times si have to be scheduled.
In order to maximize the system reliability we require the spare (n � 1) units to start their operation at optimal
scheduled times. It is a case of an active redundancy in that a position is functioning if either the original unit
or a spare one is functioning. Unlike most earlier studies, the problem here is, not where to allocate a spare
unit but when to invoke it in order to optimize the system reliability. The n units are non-repairable and non-
identical. The first unit starts its operation at time s1 = 0 and the rest (n � 1) are standbys. Each one of the
(n � 1) standbys starts its operation at scheduled time si (i = 2, . . .,n) and works in parallel with those already
introduced and not failed before si. In Section 3, the system reliability is evaluated via recursive relation as a
function of the starting times si (i = 2, . . .,n). In Section 4, applying this recursive relation we get the final
expression for the system reliability in closed form in terms of the unit�s reliability functions R0is
(i = 1, . . .,n). In Section 5, introducing into this closed form some special lifetime-distributions and maximiz-
ing with respect to the s0is we get the optimal starting times. The mean time to system failure (MTSF) is eval-
uated in the same section. Comparisons with the applied policy in Papageorgiou and Kokolakis [6] are made.
Optimal ordering of non-identical units is also considered.

2. System description

The problem of the successful control of a process by an active redundant system with scheduled staring
times of the units, is considered in this paper.
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Fig. 1. Units U1,U2, . . .,Un starting operation at scheduled times s1, s2, . . ., sn, respectively.
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Here, there is available a fixed number of n non-repairable and non-identical units. The unit-lifetimes Ti

(i = 1, . . .,n) are random independently distributed with cdf Fi, respectively. The process is considered to
have a fixed duration c. The control of the process is considered successful provided that during the required
period of time c, at least one unit is in operation and the process information required for the control is
transferred instantaneously to a new entering unit from a working one. The process is initially controlled
by one unit and the remaining (n � 1) units are standbys. The initial unit U1 starts its operation at time
s1 = 0. The second unit U2 starts its operation at scheduled time s2 P s1 = 0, provided that the first unit
was in operation up to time s2 after which both units work in parallel. Similarly, the third unit U3 starts
its operation at scheduled time s3 P s2 and works in parallel with those that were in operation up to its
entrance time s3.

In general, the ith unit starts its operation at time si P si�1, . . .,Ps2 P s1, and it works in parallel with those
already introduced and not failed before si (see Fig. 1). Thus, the process is simultaneously controlled by at
most (n � 1) working units until the entrance of the last available one and it stops functioning when all units
have failed. The probability of the successful control of the process till its completion time c depends on the
distributions of unit-lifetimes and their starting times si (i = 2, . . .,n). The problem here is to evaluate the above
probability and to find the optimal schedule of the starting times.

There are many realistic situations where the above policy describes the control of a process by an
active redundant system. For example, we consider a data processing system with n available video dis-
plays that may work in parallel and where at least one operating display is sufficient. We assume that
the system does not allow any human interference for inspection, unit replacement or repair during a
required period c. Initially, a display starts its operation. To increase the system reliability, we schedule
the starting times of the rest (n � 1) displays. Thus, we optimize the system reliability by maximizing the
reliability function with respect to the starting times si (i = 2, . . .,n) and we follow that optimal schedule
for the displays.

3. Model analysis

Let T be the system lifetime and Ti the independent unit-lifetime with pdf fi and reliability function Ri

(i = 1, . . .,n), respectively. Let also S be the event of the successful control of the process during the required
period of time c, i.e. S ¼ fT P cg and Si be the event of the successful control of the process up to time si, i.e.
Si ¼ fT P sig.

From the description of the policy above it follows that the system may be functioning with at most n units
in parallel structure, even though the requirement for system operation is that a single unit is sufficient to oper-
ate. In this section we are interested in evaluating the system reliability P ½S� ¼ P ½T P c� as a function of the
starting times si (i = 2, . . .,n). For notational convenience we put sn+1 � c.
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3.1. General case
Theorem 1. The system reliability P ½S� is given by
P ½S� ¼ P ½S1�P ½S2 j S1�P ½S3 j S2� � � � P ½Snþ1 j Sn�;

where
Si ¼ fT P sig; ði ¼ 1; . . . ; nþ 1Þ; S ¼Snþ1;
and
P ½Siþ1jSi� ¼ riðsiþ1Þ; ði ¼ 1; . . . ; nÞ;

where
riðsÞ ¼
ri�1ðsÞ
ri�1ðsiÞ

þ 1� ri�1ðsÞ
ri�1ðsiÞ

� �
Riðs� siÞ; s > si; ði ¼ 2; . . . ; nÞ;
with initial term
r1ðsÞ ¼ R1ðsÞ; s P 0;
and P ½S1� ¼ 1.

Proof. The sequence of Si ði ¼ 1; 2; . . .Þ, is decreasing and thus with Snþ1 ¼ S ¼ fT P cg, we have:
P ½S� ¼ P ½Snþ1� ¼ P
\nþ1

i¼1

Si

" #
¼ P ½S1�P ½S2jS1�P ½S3jS1S2� � � � P ½Snþ1jS1S2 � � �Sn�

¼ P ½S1�P ½S2jS1�P ½S3jS2� � � � P ½Snþ1jSn�. ð1Þ
Since s1 = 0, the first term of the above product P ½S1�, is
P ½S1� ¼ P ½T P s1� ¼ P ½T P 0� ¼ 1;
while using the independence between T1 and T2, the second term P ½S2jS1�, is
P ½S2jS1� ¼ P ½T P s2jT P s1� ¼ P ½T P s2� ¼ R1ðs2Þ. ð2Þ

For the third term P ½S3jS2�, we have:
P ½S3jS2� ¼ P ½T P s3jT P s2� ¼ P ½maxfT 1; s2 þ T 2gP s3jT 1 P s2�
¼ 1� P ½T 1 < s3; T 2 < s3 � s2jT 1 P s2� ¼ 1� P ½T 1 < s3jT 1 P s2�P ½T 2 < s3 � s2jT 1 P s2�

¼ 1� P ½T 1 < s3jT 1 P s2�P ½T 2 < s3 � s2� ¼ 1� P ½s2 6 T 1 < s3�
P ½T 1 P s2�

f1� P ½T 2 P s3 � s2�g

¼ 1� R1ðs2Þ � R1ðs3Þ
R1ðs2Þ

f1� R2ðs3 � s2Þg;
and thus
P ½S3jS2� ¼
R1ðs3Þ
R1ðs2Þ

þ 1� R1ðs3Þ
R1ðs2Þ

� �
R2ðs3 � s2Þ. ð3Þ
Similarly, for the general term P ½Siþ1jSi� (i = 2, . . .,n), we have:
P ½Siþ1jSi� ¼ P ½T P siþ1jT P si� ¼ P ½maxfT 1; s2 þ T 2; . . . ; si þ T igP siþ1jT 1 P s2;maxfT 1; s2 þ T 2g
P s3; . . . ;maxfT 1; s2 þ T 2; . . . ; si�1 þ T i�1gP si�
¼ P ½maxfmaxfT 1; s2 þ T 2; . . . ; si�1 þ T i�1g; si þ T igP siþ1jT 1 P s2;maxfT 1; s2 þ T 2g
P s3; . . . ;maxfT 1; s2 þ T 2; . . . ; si�1 þ T i�1gP si�.
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Let now
Y i � maxf0; T 1; s2 þ T 2; . . . ; si þ T ig � siþ1 ði ¼ 1; . . . ; nÞ. ð4Þ

Using the above notation the event Si can be written:
Si ¼ fT 1 P s2;maxfT 1; s2 þ T 2gP s3; . . . ;maxfT 1; s2 þ T 2; . . . ; si�1 þ T i�1gP sig
¼ fY 1 P 0; Y 2 P 0; . . . ; Y i�1 P 0g ð5Þ
and thus we have
Siþ1 ¼ Si \ fY i P 0g ði ¼ 1; . . . ; nÞ.

Thus, the conditional probability P ½Siþ1jSi� (i = 2, . . .,n), can be written:
P ½Siþ1jSi� ¼ P ½maxfsi þ Y i�1; si þ T igP siþ1jSi�1; Y i�1 P 0�
¼ P ½Y i�1 P 0;maxfsi þ Y i�1; si þ T igP siþ1jSi�1�=P ½Y i�1 P 0jSi�1�
¼ f1� P ½fY i�1 < 0g [ fmaxfsi þ Y i�1; si þ T ig < siþ1gjSi�1�g=P ½Y i�1 P 0jSi�1�
¼ f1� P ½Y i�1 < 0jSi�1� � P ½maxfsi þ Y i�1; si þ T ig < siþ1jSi�1�
þ P ½Y i�1 < 0;maxfsi þ Y i�1; si þ T ig < siþ1jSi�1�g=P ½Y i�1 P 0jSi�1�;
and thus,
P ½Siþ1jSi� ¼ fP ½Y i�1 P 0jSi�1� � P ½maxfsi þ Y i�1; si þ T ig < siþ1jSi�1�
þ P ½Y i�1 < 0;maxfsi þ Y i�1; si þ T ig < siþ1jSi�1�g=P ½Y i�1 P 0jSi�1�. ð6Þ
Since P ½Y i�1 P 0jSi�1� ¼ P ½SijSi�1�, and due to the independence of T�s, we can write:
P ½Siþ1jSi� ¼ fP ½SijSi�1� � P ½si þ Y i�1 < siþ1jSi�1�P ½si þ T i < siþ1jSi�1�
þ P ½Y i�1 < 0jSi�1�P ½si þ T i < siþ1jSi�1�g=P ½SijSi�1�
¼ 1� fP ½si þ Y i�1 < siþ1jSi�1� � P ½Y i�1 < 0jSi�1�gP ½T i < siþ1 � si�=P ½SijSi�1�;
and thus
P ½Siþ1jSi� ¼ 1� P ½si 6 si þ Y i�1 < siþ1jSi�1�f1� P ½T i P siþ1 � si�g=P ½SijSi�1� ði ¼ 2; . . . ; nÞ. ð7Þ

For notational convenience let us also define:
riðsÞ ¼ P ½T P sjT P si� ðs P 0Þ ði ¼ 1; . . . ; nÞ;

with
r1ðsÞ ¼ R1ðsÞ; s P 0.
For s = si+1, we have:
riðsiþ1Þ ¼ P ½Siþ1 j Si�;

and from (7)
riðsiþ1Þ ¼ 1� fri�1ðsiÞ � ri�1ðsiþ1Þgf1� Riðsiþ1 � siÞg
ri�1ðsiÞ

¼ ri�1ðsiþ1Þ
ri�1ðsiÞ

þ 1� ri�1ðsiþ1Þ
ri�1ðsiÞ

� �
Riðsiþ1 � siÞ

ði ¼ 2; . . . ; nÞ. �
Applying the above recursive relation we get the final expression for the system reliability in closed form in
terms of the unit�s reliability functions R0is (i = 1, . . .,n).
4. Applications

In this section we give the final expressions for the system reliability applying Theorem 1 for n = 3 and 4.
These expressions are used in Section 5 for exact analytic evaluations of the system reliability and the mean



1540 G. Kokolakis, E. Papageorgiou / Applied Mathematical Modelling 30 (2006) 1535–1545
time to system failure (MTSF) with specific lifetime distributions. For larger systems, the application of the
recursive expression in Theorem 1 becomes quite complicated. So, we have developed a program within the
‘‘Mathematica’’ environment which derives the final expression for the system reliability in closed form in
terms of R0is.

4.1. Three-unit parallel system

For n = 3 we have from (1)
P ½S� ¼ P ½S1�P ½S2jS1�P ½S3jS2�P ½S4jS3�; ð8Þ
with P ½S1� ¼ 1 and P ½S2jS1�, P ½S3jS2� given by (2) and (3), respectively.
By Theorem 1 and with s4 = c, the conditional probability P ½S4jS3� is:
P ½S4jS3� ¼ r3ðs4Þ; ð9Þ

where
r3ðs4Þ ¼
r2ðs4Þ
r2ðs3Þ

þ 1� r2ðs4Þ
r2ðs3Þ

� �
R3ðs4 � s3Þ; ð10Þ

r2ðsiÞ ¼
r1ðsiÞ
r1ðs2Þ

þ 1� r1ðsiÞ
r1ðs2Þ

� �
R2ðsi � s2Þ ði ¼ 3; 4Þ ð11Þ
and
r1ðsiÞ ¼ R1ðsiÞ ði ¼ 2; 3; 4Þ. ð12Þ

Introducing the relations (10)–(12) into (9) we can write:
P ½S4jS3� ¼ r3ðs4Þ
¼ fR1ðs4Þ þ R2ðs4 � s2Þ½R1ðs2Þ � R1ðs4Þ� þ fR1ðs3Þ þ R2ðs3 � s2Þ½R1ðs2Þ � R1ðs3Þ� � R1ðs4Þ
� R2ðs4 � s2Þ½R1ðs2Þ � R1ðs4Þ�gR3ðs4 � s3Þg=fR1ðs3Þ þ R2ðs3 � s2Þ½R1ðs2Þ � R1ðs3Þ�g. ð13Þ
Thus, from (2), (3) and (13), the relation (8) becomes:
P ½S� ¼ R1ðs4Þ þ R2ðs4 � s2Þ½R1ðs2Þ � R1ðs4Þ� þ fR1ðs3Þ þ R2ðs3 � s2Þ½R1ðs2Þ � R1ðs3Þ� � R1ðs4Þ
� R2ðs4 � s2Þ½R1ðs2Þ � R1ðs4Þ�gR3ðs4 � s3Þ. ð14Þ
4.2. Four-unit parallel system

For n = 4 we have from (1)
P ½S� ¼ P ½S1�P ½S2jS1�P ½S3jS2�P ½S4jS3�P ½S5jS4�. ð15Þ

By Theorem 1 and with s5 = c, the conditional probability P ½S5jS4� is:
P ½S5jS4� ¼ r4ðs5Þ; ð16Þ

where
r4ðs5Þ ¼
r3ðs5Þ
r3ðs4Þ

þ 1� r3ðs5Þ
r3ðs4Þ

� �
R4ðs5 � s4Þ; ð17Þ

r3ðsiÞ ¼
r2ðsiÞ
r2ðs3Þ

þ 1� r2ðsiÞ
r2ðs3Þ

� �
R3ðsi � s3Þ ði ¼ 4; 5Þ; ð18Þ

r2ðsiÞ ¼
r1ðsiÞ
r1ðs2Þ

þ 1� r1ðsiÞ
r1ðs2Þ

� �
R2ðsi � s2Þ ði ¼ 3; 4; 5Þ ð19Þ
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and
r1ðsiÞ ¼ R1ðsiÞ ði ¼ 2; 3; 4; 5Þ. ð20Þ

Using relations (16)–(20) together with (14), relation (15) yields:
P ½S� ¼ fR1ðs5Þ þ R2ðs5 � s2ÞR1ðs2Þ � R1ðs5ÞR2ðs5 � s2Þg
� f1� R3ðs5 � s3Þ � R4ðs5 � s4Þ þ R3ðs5 � s3ÞR4ðs5 � s4Þg
þ fR1ðs4Þ þ R2ðs4 � s2ÞR1ðs2Þ � R1ðs4ÞR2ðs4 � s2Þg
� fR4ðs5 � s4Þ � R3ðs4 � s3ÞR4ðs5 � s4Þg
þ fR1ðs3Þ þ R2ðs3 � s2ÞR1ðs2Þ � R1ðs3ÞR2ðs3 � s2Þg
� fR3ðs5 � s3Þ � R3ðs5 � s3ÞR4ðs5 � s4Þ þ R3ðs4 � s3ÞR4ðs5 � s4Þg. ð21Þ
5. Analytical results with special distributions

In this section we present analytical results for the reliability function of a three and four-unit system with
independent unit-lifetimes which are either identically or not identically Weibull distributed. Optimal starting
times and the corresponding MTSF are evaluated. Comparisons between the policy applied here (Policy I),
and the policy applied in Papageorgiou and Kokolakis [6] (Policy II), are made.

5.1. Reliability of an identical three-unit system with Weibull lifetimes

In the case of a three-unit system with independent and identically distributed unit-lifetimes following a
Weibull distribution with pdf f ðtÞ ¼ ab�ae�ð

t
bÞ

a
ta�1, and with s1 = 0, s4 = c, the reliability of the system P ½S�

from (14), is given by
P ½S� ¼ P ½T P c�
¼ e�b�aca � e�b�aca�b�aðc�s2Þa þ e�b�aðc�s2Þa�b�asa

2 � e�b�aca�b�aðc�s3Þa þ e�b�aca�b�aðc�s2Þa�b�aðc�s3Þa

� e�b�asa
2
�b�aðc�s2Þa�b�aðc�s3Þa þ e�b�asa

3
�b�aðc�s3Þa þ e�b�asa

2
�b�aðc�s3Þa�b�aðs3�s2Þa

� e�b�asa
3
�b�aðc�s3Þa�b�aðs3�s2Þa . ð22Þ
If the lifetimes of the three units follow a special Weibull distribution with a = 2 and b = 1, i.e. when
f ðtÞ ¼ 2te�t2 , then from (22) we have:
P ½S� ¼ P ½T P c�

¼ e�c2 � e�c2�ðc�s2Þ2 þ e�s2
2
�ðc�s2Þ2 � e�c2�ðc�s3Þ2 þ e�s2

3
�ðc�s3Þ2 þ e�c2�ðc�s2Þ2�ðc�s3Þ2

� e�s2
2
�ðc�s2Þ2�ðc�s3Þ2 þ e�s2

2
�ðc�s3Þ2�ðs3�s2Þ2 � e�s2

3
�ðc�s3Þ2�ðs3�s2Þ2 . ð23Þ
In this case the mean lifetime of the units is E½T � ¼
ffiffi
p
p

2
. The reliability function (23), for several starting times

s2, s3 and c = 1.5 is shown in Fig. 2. After optimizing the above expression with respect to s2 and s3 (Policy I),
we get s2 = 0.364, s3 = 0.898 and P ½S� ¼ 0:632. The corresponding mean time to system failure in this case is
MTSF = 1.48.

In Papageorgiou and Kokolakis [6], an n-unit standby redundant system was studied. Two units start their
operation simultaneously at time s = 0 and one of these is replaced by a new one upon its failure (Policy II).
The authors showed that when the lifetimes of the three units are independent and follow a Weibull distribu-
tion with the same parameters a = 2 and b = 1, the system reliability is given by
P ½S� ¼ P ½T P c�

¼ � 5

3
e�2c2 þ 8

3
e�c2 � ce�

3
2c2 ffiffiffiffiffiffi

2p
p

Erf
cffiffiffi
2
p
� �

þ 2

3
ce�

2
3c2

ffiffiffi
p
3

r
Erf

cffiffiffi
3
p
� �

þ 2

3
ce�

2
3c2

ffiffiffi
p
3

r
Erf

2cffiffiffi
3
p
� �

; ð24Þ



Table 1
Weibull iid (n = 3, a = 2, b = 1)

Reliability of the systems

c Policy I Policy II

0.3 0.9996 0.9998
0.6 0.9870 0.9912
0.9 0.9266 0.9330
1.2 0.8011 0.7799
1.5 0.6320 0.5541
1.8 0.4563 0.3322

Reliability of a three-unit system
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Fig. 2. System reliability as a function of starting times s2, s3, for required period c = 1.5 and with parameters a = 2 and b = 1.
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where
Erf ½z� ¼ 2ffiffiffi
p
p

Z z

0

e�t2 dt.
In Table 1, the system reliability is presented for the above Policies I and II and for several values of c. It is
apparent that Policy II is superior at high reliability levels, while at low reliability levels Policy I is superior.

5.2. Reliability of an identical four-unit system with Weibull lifetimes

In the case of a four-unit system with independent unit-lifetimes following a Weibull distribution with
parameters a and b, with s1 = 0 and s5 = c, the reliability of the system P ½S� from (21), is given by
P ½S� ¼ P ½T P c�
¼ e�b�aca � e�b�aca�b�aðc�s2Þa þ e�b�aðc�s2Þa�b�asa

2 � e�b�aca�b�aðc�s3Þa þ e�b�aca�b�aðc�s2Þa�b�aðc�s3Þa

� e�b�asa
2
�b�aðc�s2Þa�b�aðc�s3Þa þ e�b�asa

3
�b�aðc�s3Þa þ e�b�asa

2
�b�aðc�s3Þa�b�aðs3�s2Þa

� e�b�asa
3
�b�aðc�s3Þa�b�aðs3�s2Þa � e�b�aca�b�aðc�s4Þa þ e�b�aca�b�aðc�s2Þa�b�aðc�s4Þa

� e�b�asa
2
�b�aðc�s2Þa�b�aðc�s4Þa þ e�b�aca�b�aðc�s3Þa�b�aðc�s4Þa � e�b�aca�b�aðc�s2Þa�b�aðc�s3Þa�b�aðc�s4Þa

þ e�b�asa
2
�b�aðc�s2Þa�b�aðc�s3Þa�b�aðc�s4Þa � e�b�asa

3
�b�aðc�s3Þa�b�aðc�s4Þa
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� e�b�asa
2
�b�aðc�s3Þa�b�aðs3�s2Þa�b�aðc�s4Þa þ e�b�asa

3
�b�aðc�s3Þa�b�aðs3�s2Þa�b�aðc�s4Þa þ e�b�asa

4
�b�aðc�s4Þa

þ e�b�asa
2
�b�aðc�s4Þa�b�aðs4�s2Þa � e�b�asa

4
�b�aðc�s4Þa�b�aðs4�s2Þa þ e�b�asa

3
�b�aðc�s4Þa�b�aðs4�s3Þa

þ e�b�asa
2
�b�aðc�s4Þa�b�aðs4�s3Þa�b�aðs3�s2Þa � e�b�asa

3
�b�aðc�s4Þa�b�aðs4�s3Þa�b�aðs3�s2Þa

� e�b�asa
4
�b�aðc�s4Þa�b�aðs4�s3Þa � e�b�asa

2
�b�aðc�s4Þa�b�aðs4�s2Þa�b�aðs4�s3Þa þ e�b�asa

4
�b�aðc�s4Þa�b�aðs4�s2Þa�b�aðs4�s3Þa .

ð25Þ
If the lifetimes of the three units follow a special Weibull distribution with a = 2 and b = 1, i.e. when f ðtÞ ¼
2te�t2

, then from (25) we have:
P ½S� ¼ P ½T P c�

¼ e�c2 � e�c2�ðc�s2Þ2 þ e�s2
2
�ðc�s2Þ2 � e�c2�ðc�s3Þ2 þ e�s2

3
�ðc�s3Þ2 þ e�c2�ðc�s2Þ2�ðc�s3Þ2

� e�s2
2
�ðc�s2Þ2�ðc�s3Þ2 þ e�s2

2
�ðc�s3Þ2�ðs3�s2Þ2 � e�s2

3
�ðc�s3Þ2�ðs3�s2Þ2 � e�c2�ðc�s4Þ2 þ e�c2�ðc�s2Þ2�ðc�s4Þ2

� e�s2
2
�ðc�s2Þ2�ðc�s4Þ2 þ e�c2�ðc�s3Þ2�ðc�s4Þ2 � e�c2�ðc�s2Þ2�ðc�s3Þ2�ðc�s4Þ2 þ e�s2

2
�ðc�s2Þ2�ðc�s3Þ2�ðc�s4Þ2

� e�s2
3
�ðc�s3Þ2�ðc�s4Þ2 � e�s2

2
�ðc�s3Þ2�ðc�s4Þ2�ðs3�s2Þ2 þ e�s2

3
�ðc�s3Þ2�ðc�s4Þ2�ðs3�s2Þ2 þ e�s2

4
�ðc�s4Þ2

þ e�s2
2
�ðc�s4Þ2�ðs4�s2Þ2 � e�s2

4
�ðc�s4Þ2�ðs4�s2Þ2 þ e�s2

3
�ðc�s4Þ2�ðs4�s3Þ2 þ e�s2

2
�ðc�s4Þ2�ðs4�s3Þ2�ðs3�s2Þ2

� e�s2
4
�ðc�s4Þ2�ðs4�s3Þ2 � e�s2

3
�ðc�s4Þ2�ðs4�s3Þ2�ðs3�s2Þ2 � e�s2

2
�ðc�s4Þ2�ðs4�s3Þ2�ðs4�s2Þ2

þ e�s2
4
�ðc�s4Þ2�ðs4�s3Þ2�ðs4�s2Þ2 . ð26Þ
Here, again, the mean lifetime of the units is E½T � ¼
ffiffi
p
p

2
. After optimizing the above expression with respect

to s2, s3 and s4, for c = 1.5, we get s2 = 0.184, s3 = 0.607 and s4 = 1.016 and P ½S� ¼ 0:814. The corresponding
mean time to system failure in this case is MTSF = 1.82.
5.3. Reliability of a non-identical three-unit system with Weibull lifetimes

In the case of a three-unit system with independent unit-lifetimes following Weibull distributions with dif-
ferent parameters (ai,bi), for i = 1, 2 and 3, then from (14), with s1 = 0 and s4 = c, the reliability of the system
P ½S� is given by
P ½S� ¼ P ½T P c�

¼ e�b
�a1
1

ca1 � e�b
�a1
1

ca1�b
�a2
2
ðc�s2Þa2 þ e�b

�a2
2
ðc�s2Þa2�b

�a1
1

s
a1
2 � e�b

�a1
1

ca1�b
�a3
3
ðc�s3Þa3

þ e�b
�a1
1

ca1�b
�a2
2
ðc�s2Þa2�b

�a3
3
ðc�s3Þa3 � e�b

�a1
1

s
a1
2
�b
�a2
2
ðc�s2Þa2�b

�a3
3
ðc�s3Þa3 þ e�b

�a1
1

s
a1
3
�b
�a3
3
ðc�s3Þa3

þ e�b
�a1
1

s
a1
2
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðc�s3Þa3 � e�b

�a1
1

s
a1
3
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðc�s3Þa3

. ð27Þ
If the lifetimes of the three units follow special Weibull distributions with (a1,b1) = (2,1), i.e. f1ðtÞ ¼ 2te�t2
,

(a2,b2) = (2,1.5), i.e. f2ðtÞ ¼ 0:888889te�0:444444t2 and (a3,b3) = (2,2), i.e. f3ðtÞ ¼ 1
2
te
�t2

4 , then from (27) we get
an analytic expression for the system reliability. In this case the units mean lifetimes are E[T1] = 0.8862,
E[T2] = 1.3293 and E[T3] = 1.7725. After optimizing the derived expression for c = 1.5 with respect to s2

and s3, we get s2 = 0.113, s3 = 0.615 and P ½S� ¼ 0:870. The corresponding mean time to system failure in this
case is MTSF = 2.42.

5.4. Reliability of a non-identical four-unit system with Weibull lifetimes

In the case of a four-unit system with independent unit-lifetimes following Weibull distributions with dif-
ferent parameters (ai,bi), for i = 1,2,3 and 4, then from (21), with s1 = 0 and s5 = c, the reliability of the sys-
tem P ½S� is given by
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P ½S� ¼ P ½T P c�

¼ e�b
�a1
1

ca1 � e�b
�a1
1

ca1�b
�a2
2
ðc�s2Þa2 þ e�b

�a2
2
ðc�s2Þa2�b

�a1
1

s
a1
2 � e�b

�a1
1

ca1�b
�a3
3
ðc�s3Þa3

þ e�b
�a1
1

ca1�b
�a2
2
ðc�s2Þa2�b

�a3
3
ðc�s3Þa3 � e�b

�a1
1

s
a1
2
�b
�a2
2
ðc�s2Þa2�b

�a3
3
ðc�s3Þa3 þ e�b

�a1
1

s
a1
3
�b
�a3
3
ðc�s3Þa3

þ e�b
�a1
1

s
a1
2
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðc�s3Þa3 � e�b

�a1
1

s
a1
3
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðc�s3Þa3 � e�b

�a1
1

ca1�b
�a4
4
ðc�s4Þa4

þ e�b
�a1
1

ca1�b
�a2
2
ðc�s2Þa2�b

�a4
4
ðc�s4Þa4 � e�b

�a1
1

s
a1
2
�b
�a2
2
ðc�s2Þa2�b

�a4
4
ðc�s4Þa4

þ e�b
�a1
1

ca1�b
�a3
3
ðc�s3Þa3�b

�a4
4
ðc�s4Þa4 � e�b

�a1
1

ca1�b
�a2
2
ðc�s2Þa2�b

�a3
3
ðc�s3Þa3�b

�a4
4
ðc�s4Þa4

þ e�b
�a1
1

s
a1
2
�b
�a2
2
ðc�s2Þa2�b

�a3
3
ðc�s3Þa3�b

�a4
4
ðc�s4Þa4 � e�b

�a1
1

s
a1
3
�b
�a3
3
ðc�s3Þa3�b

�a4
4
ðc�s4Þa4

� e�b
�a1
1

s
a1
2
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðc�s3Þa3�b

�a4
4
ðc�s4Þa4 þ e�b

�a1
1

s
a1
3
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðc�s3Þa3�b

�a4
4
ðc�s4Þa4

þ e�b
�a1
1

s
a1
4
�b
�a4
4
ðc�s4Þa4 þ e�b

�a1
1

s
a1
2
�b
�a2
2
ðs4�s2Þa2�b

�a4
4
ðc�s4Þa4 � e�b

�a1
1

s
a1
4
�b
�a2
2
ðs4�s2Þa2�b

�a4
4
ðc�s4Þa4

þ e�b
�a1
1

s
a1
3
�b
�a3
3
ðs4�s3Þa3�b

�a4
4
ðc�s4Þa4 þ e�b

�a1
1

s
a1
2
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðs4�s3Þa3�b

�a4
4
ðc�s4Þa4

� e�b
�a1
1

s
a1
3
�b
�a2
2
ðs3�s2Þa2�b

�a3
3
ðs4�s3Þa3�b

�a4
4
ðc�s4Þa4 � e�b

�a1
1

s
a1
4
�b
�a3
3
ðs4�s3Þa3�b

�a4
4
ðc�s4Þa4

� e�b
�a1
1

s
a1
2
�b
�a2
2
ðs4�s2Þa2�b

�a3
3
ðs4�s3Þa3�b

�a4
4
ðc�s4Þa4 þ e�b

�a1
1

s
a1
4
�b
�a2
2
ðs4�s2Þa2�b

�a3
3
ðs4�s3Þa3�b

�a4
4
ðc�s4Þa4

. ð28Þ
If the lifetimes of the three units follow special Weibull distributions where (ai,bi) (i = 1, . . ., 3) are same as
in case of the previous section, and (a4,b4) = (2,2.5) i.e. f4ðtÞ ¼ 0:32te�0:16t2 and E[T4] = 2.2156, then from (28)
we get an analytic expression for the system reliability. After optimizing the derived expression with respect to
s2, s3 and s4, for c = 1.5, we get s2 = 0.022, s3 = 0.302 and s4 = 0.753 and P ½S� ¼ 0:978. The corresponding
mean time to system failure in this case is MTSF = 3.22.

Remark. In the case of different lifetime distributions it might be of interest to optimize the system with
respect to the order the units are introduced. The optimal ordering of the units can be easily specified by
considering all possible permutations of the unit reliability functions R0is in the derived from Theorem 1 final
closed form of the system reliability. In the case of four non-identical units with Weibull lifetimes we may
conclude from the final closed form (28) that the probability of successful control is maximized by using the
best, i.e. the one with the largest mean lifetime, first. For example, with c = 1.5, ai = 2 (i = 1, . . ., 4), b1 = 2.5,
b2 = 2, b3 = 1.5 and b4 = 1 and si (i = 1, . . ., 4) the corresponding optimal starting times, we obtain
P ½S� ¼ 0:987, whereas with b1 = 1, b2 = 1.5, b3 = 2 and b4 = 2.5 we get, as mentioned before, P ½S� ¼ 0:978.
For the same parameters, and with c = 2.5, we also obtain maximum probability P ½S� ¼ 0:872, for descending
b0is. We reach the same conclusion in the case of Exponential unit-lifetimes.
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